The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure...The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure was: (1) annual maximum normalized difference vegetation index (NDVI) over the landscape was calculated from TM images; (2) the relationship model between NDVI and LAI was built and annual maximum LAI over the landscape was simulated; (3) the relationship models between LAI and biomass were built and annual branch, stem, root and maximum leaf biomass over the landscape were simulated; (4) spatial distribution patterns of leaf biomass and LAI in different periods all the year round were obtained. The simulation was based on spatial analysis module GRID in ArcInfo software. The method is also a kind of scaling method from patch scale to landscape scale. A case study of Changbai Mountain Nature Reserve was dissertated. Analysis and primary validation were carried out to the simulated LAI and biomass for the major vegetation types in the Changbai Mountain in 1995.展开更多
Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of t...Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin. These indices include patch number, mean patch area, fragment index, patch extension index, etc. The results showed that: (1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area. The fragment degree became very high. (2) The area of all the forest patch types had witnessed great changes. The fractal degree of each forest patch type became big from 1983 to 1999. The mean extension index of Robinia pseudoacacia forest, non-forest, shrub forest, sparse forest, and Quercus species forest increased rapidly, but that of economic forest became zero. The fractal dimension each showed that forest coverage has been promoted. (3) The changes of landscape patterns were different in different geomorphic regions. From 1983 to 1999 the vegetation cover area, the gross number and the density of patch, diversity and evenness of landscape were all reduced greatly in gullies and ravines, but the maximum area and the mean area of patch types were increased. In hilly region, both the forest cover area and the number of patch increased from 1983 to 1999, but the mean area of patch was reduced greatly. In mountain region, even though the area under forest canopy reduced from 1983 to 1999, the patch number was increased greatly, the mean area of all patch types was reduced, the extension index, diversity index and evenness index of landscape were all increased. Furthermore, because of different types of land use, human activity and terrain, the vegetation changes on northern and southern mountain slopes were different. According to these analyses, the main driving forces, such as the policies of management, market economy, influence of human activities etc. are brought out.展开更多
基金One Hundred Talents Program of CAS No.CXIOG-C00-01+1 种基金 National Natural Science Foundation of China No.39970613
文摘The method for simulating the temporal and spatial distribution patterns of leaf area index (LAI) and biomass at landscape scale using remote sensing images and surface data was discussed in this paper. The procedure was: (1) annual maximum normalized difference vegetation index (NDVI) over the landscape was calculated from TM images; (2) the relationship model between NDVI and LAI was built and annual maximum LAI over the landscape was simulated; (3) the relationship models between LAI and biomass were built and annual branch, stem, root and maximum leaf biomass over the landscape were simulated; (4) spatial distribution patterns of leaf biomass and LAI in different periods all the year round were obtained. The simulation was based on spatial analysis module GRID in ArcInfo software. The method is also a kind of scaling method from patch scale to landscape scale. A case study of Changbai Mountain Nature Reserve was dissertated. Analysis and primary validation were carried out to the simulated LAI and biomass for the major vegetation types in the Changbai Mountain in 1995.
基金Prominent Youth Science Foundation of Henan Province No.0003+2 种基金 No.9920 Natural Science Foundation of Henan Province No. 0111070100
文摘Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin. These indices include patch number, mean patch area, fragment index, patch extension index, etc. The results showed that: (1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area. The fragment degree became very high. (2) The area of all the forest patch types had witnessed great changes. The fractal degree of each forest patch type became big from 1983 to 1999. The mean extension index of Robinia pseudoacacia forest, non-forest, shrub forest, sparse forest, and Quercus species forest increased rapidly, but that of economic forest became zero. The fractal dimension each showed that forest coverage has been promoted. (3) The changes of landscape patterns were different in different geomorphic regions. From 1983 to 1999 the vegetation cover area, the gross number and the density of patch, diversity and evenness of landscape were all reduced greatly in gullies and ravines, but the maximum area and the mean area of patch types were increased. In hilly region, both the forest cover area and the number of patch increased from 1983 to 1999, but the mean area of patch was reduced greatly. In mountain region, even though the area under forest canopy reduced from 1983 to 1999, the patch number was increased greatly, the mean area of all patch types was reduced, the extension index, diversity index and evenness index of landscape were all increased. Furthermore, because of different types of land use, human activity and terrain, the vegetation changes on northern and southern mountain slopes were different. According to these analyses, the main driving forces, such as the policies of management, market economy, influence of human activities etc. are brought out.