High energy density capacitor is a key device to power supply source for electromagnetic gun (EMG) system, and extending its lifetime is important for increasing the reliability of the power source. Working in high el...High energy density capacitor is a key device to power supply source for electromagnetic gun (EMG) system, and extending its lifetime is important for increasing the reliability of the power source. Working in high electric field could affect the capacitor lifetime, and this effect on metallized polypropylene film capacitors (MPPFCs) in pulsed-power applications is studied and presented. Experimental re- sults show that the lifetime of MPPFCs decreases with the increasing peak value of charged electric field, and this decrease could be described by function (L/L0) ∝ (E/E0)–m, where, m=7.32. The lifetime of MPPFCs also decreases with the increase of the reversal coeffi- cients in underdamped circuits, which could be described by (L/L0) ∝ (ln(1/K0)/(ln(1/K))–b, where, b=0.7. These results provide a basis for the lifetime prediction of MPPFCs in pulsed-power applications.展开更多
The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were perform...The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.展开更多
The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge e...The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.展开更多
<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In...<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>展开更多
With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconduct...With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
We investigate SrBi2 Ta2 O9 (SBT) films prepared by the sol-gel spin method with different spin rates or different anneal conditions for the first layer of SBT, as promising ferroelectric layer materials applied to ...We investigate SrBi2 Ta2 O9 (SBT) films prepared by the sol-gel spin method with different spin rates or different anneal conditions for the first layer of SBT, as promising ferroelectric layer materials applied to ferroelectric random access memory (FeRAM). All the specimens in this experiment have similar SBT crystal orientations of (115), (020), (220), and (135). The Pt/SBT/Pt capacitor with coating of 3000rpm spin rate has a perfect rectangle shape of hysteresis loops, remanent polarization of 7.571μC/cm^2 and coercive voltage of 0.816 V at 5 V voltage amplitude. These characteristics are better than those with coating of 3500rpm spin rate, which is attributed to the influence for thickness and grain size of the film from depressed spin rate. Slow-rate anneal in the furnace for the first layer of SBT can improve the crystallization processes and properties for SBT layers slightly, compared with rapid thermal annealing. The ion damage from etching for the top electrode can influence leakage current characteristics of the Pt/SBT/Pt capacitor at positive voltage bias.展开更多
Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric ...Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.展开更多
基金Project supported by Opening Foundation of National Engineering Laboratory for UltraHigh Voltage Engineering Technology (Kunming, Guangzhou, China)
文摘High energy density capacitor is a key device to power supply source for electromagnetic gun (EMG) system, and extending its lifetime is important for increasing the reliability of the power source. Working in high electric field could affect the capacitor lifetime, and this effect on metallized polypropylene film capacitors (MPPFCs) in pulsed-power applications is studied and presented. Experimental re- sults show that the lifetime of MPPFCs decreases with the increasing peak value of charged electric field, and this decrease could be described by function (L/L0) ∝ (E/E0)–m, where, m=7.32. The lifetime of MPPFCs also decreases with the increase of the reversal coeffi- cients in underdamped circuits, which could be described by (L/L0) ∝ (ln(1/K0)/(ln(1/K))–b, where, b=0.7. These results provide a basis for the lifetime prediction of MPPFCs in pulsed-power applications.
文摘The Cl2-sensitive heteropolysiloxanes(HPS) film was formed on the interdigital capacitor based on silicon dioxide by means of sol-gel process and spin-on technique.Measurements of interdigital capacitance were performed at room temperature for frequencies 100 Hz,1 kHz and 10 kHz.It is shown that there is a linear relationship between the capacitance and the concentration of chlorine gas.Influences of the measurement frequency and film thickness of silicate on the sensitivity of the sensor to C12 gas were discussed.And organically modified N,N-diethylaminopropyl-trimethoxysilane (APMS) had a much higher sensitivity.
基金supported by the National Natural Science Foundation of China(Grant Nos.51937007,and 51921005)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The further electrification of various fields in production and daily life makes it a topic worthy of exploration to improve the performance of capacitors for a long time,including thin-film capacitors.The discharge energy density of thin-film capacitors that serves as one of the important types directly depends on electric field strength and the dielectric constant of the insulation material.However,it has long been a great challenge to improve the breakdown strength and dielectric constant simultaneously.Considering that boron nitride nanosheets(BNNS)possess superior insulation and thermal conductivity owing to wide band gap and 2-dimensional structure,a bilayer polymer film is prepared via coating BNNS by solution casting on surface of polyethylene terephthalate(PET)films.By revealing the bandgap and insulating behavior with UV absorption spectrum,leakage current,and finite element calculation,it is manifested that nanocoating contributes to enhance the bandgap of polymer films,thereby suppressing the charge injection by redirecting their transport from electrodes.Worthy to note that an ultrahigh breakdown field strength(~736 MV m^(−1)),an excellent discharge energy density(~8.77 J cm^(−3))and a prominent charge-discharge efficiency(~96.51%)are achieved concurrently,which is ascribed to the contribution of BNNS ultrathin layer.In addition,the modified PET films also have superior comprehensive performance at high temperatures(~120°C).The materials and methods here selected are easily accessible and facile,which are suitable for large-scale roll-to-roll process production,and are of certain significance to explore the methods about film modification suitable for commercial promotion.
文摘<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>
文摘With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
基金Supported by the National Natural Science Foundation of China under Grant No 90407023, and the National High Technology Programme of China under Grant No 2004AA404240.
文摘We investigate SrBi2 Ta2 O9 (SBT) films prepared by the sol-gel spin method with different spin rates or different anneal conditions for the first layer of SBT, as promising ferroelectric layer materials applied to ferroelectric random access memory (FeRAM). All the specimens in this experiment have similar SBT crystal orientations of (115), (020), (220), and (135). The Pt/SBT/Pt capacitor with coating of 3000rpm spin rate has a perfect rectangle shape of hysteresis loops, remanent polarization of 7.571μC/cm^2 and coercive voltage of 0.816 V at 5 V voltage amplitude. These characteristics are better than those with coating of 3500rpm spin rate, which is attributed to the influence for thickness and grain size of the film from depressed spin rate. Slow-rate anneal in the furnace for the first layer of SBT can improve the crystallization processes and properties for SBT layers slightly, compared with rapid thermal annealing. The ion damage from etching for the top electrode can influence leakage current characteristics of the Pt/SBT/Pt capacitor at positive voltage bias.
文摘Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.