This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,...This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,and observation of surface impact effects by abrasive particles and cavitation bubbles are presented in brief.Development prospects and challenges are given for four aspects:thin-walled curved surfaces,biomedical functions,electronic information,and precise optical components.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52175124 and 52305139)the Natural Science Foundation of Zhejiang Province(Nos.LZ21E050003,LY17E050004,and LQ23E050017)+1 种基金the Zhejiang Provincial Postdoctoral Merit-Based Funding Project(No.ZJ2022068)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-202125),China.
文摘This paper reviews recent developments of the soft abrasive flow finishing(SAF)method in constraint space.The multiphase fluid dynamics modeling,material removal mechanism,auxiliary strengthening finishing techniques,and observation of surface impact effects by abrasive particles and cavitation bubbles are presented in brief.Development prospects and challenges are given for four aspects:thin-walled curved surfaces,biomedical functions,electronic information,and precise optical components.