期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
GSM-MRF based classification approach for real-time moving object detection 被引量:1
1
作者 Xiang PAN Yi-jun WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期250-255,共6页
Statistical and contextual information are typically used to detect moving regions in image sequences for a fixed camera.In this paper,we propose a fast and stable linear discriminant approach based on Gaussian Single... Statistical and contextual information are typically used to detect moving regions in image sequences for a fixed camera.In this paper,we propose a fast and stable linear discriminant approach based on Gaussian Single Model(GSM)and Markov Random Field(MRF).The performance of GSM is analyzed first,and then two main improvements corresponding to the drawbacks of GSM are proposed:the latest filtered data based update scheme of the background model and the linear classification judgment rule based on spatial-temporal feature specified by MRF.Experimental results show that the proposed method runs more rapidly and accurately when compared with other methods. 展开更多
关键词 Moving object detection Markov Random Field (MRF) Gaussian Single Model (GSM) fisher linear Discriminant Analysis (FLDA)
下载PDF
Texture Analysis and Characteristic Identification About Plaque Tissues of IVUS 被引量:1
2
作者 DONG Hai-yan LI Hong 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第2期47-55,共9页
Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the graysc... Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque. 展开更多
关键词 intravascular ultrasound statistical texture fractional texture fisher linear discriminant analysis
下载PDF
DISCRIMINATIVE ANALYSIS OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY SIGNALS FOR DEVELOPMENT OF NEUROIMAGING BIOMARKERS OF ELDERLY DEPRESSION
3
作者 YE ZHU TIANZI JIANG +1 位作者 YUAN ZHOU LISHA ZHAO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2010年第1期69-74,共6页
Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depress... Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders. 展开更多
关键词 Functional near-infrared spectroscopy(fNIRS) fisher linear discriminant analysis(FLDA) DEPRESSION
下载PDF
Palm vein recognition method based on fusion of local Gabor histograms
4
作者 Ma Xin Jing Xiaojun 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第6期55-66,共12页
Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the ... Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the accuracy of palm vein recognition systems. A new local descriptor called local Gabor principal differences patterns (LGPDP) encodes the Gabor magnitude using the local maximum difference (LMD) operator. The corresponding Gabor phase patterns are encoded by local Gabor exclusive OR (XOR) patterns (LGXP). Fisher's linear discriminant (FLD) method is then implemented to reduce the dimensionality of the feature representation. Low-dimensional Gabor magnitude and phase feature vectors are finally fused to enhance accuracy. Experimental results from Institute of Automation, Chinese Academy of sciences (CASIA) database show that the proposed FLGH method achieves better performance by utilizing score-level fusion. The equal error rate (EER) is 0.08%, which outperforms other conventional palm vein recognition methods (EER range from 2.87% to 0.16%), e.g., the Laplacian palm, minutiae feature, Hessian phase, Eigenvein, local invariant features, mutual foreground local binary patterns (LBP), and multi-sampling feature fusion methods. 展开更多
关键词 palm vein recognition Gabor filter local histogram fisher's linear discriminant
原文传递
Kernel feature extraction methods observed from the viewpoint of generating-kernels
5
作者 Jian YANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第1期43-55,共13页
This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function.Based on this idea,we present two nonlinear feature extraction methods:generating ker... This paper introduces an idea of generating a kernel from an arbitrary function by embedding the training samples into the function.Based on this idea,we present two nonlinear feature extraction methods:generating kernel principal component analysis(GKPCA)and generating kernel Fisher discriminant(GKFD).These two methods are shown to be equivalent to the function-mapping-space PCA(FMS-PCA)and the function-mapping-space linear discriminant analysis(FMS-LDA)methods,respectively.This equivalence reveals that the generating kernel is actually determined by the corresponding function map.From the generating kernel point of view,we can classify the current kernel Fisher discriminant(KFD)algorithms into two categories:KPCA+LDA based algorithms and straightforward KFD(SKFD)algorithms.The KPCA+LDA based algorithms directly work on the given kernel and are not suitable for non-kernel functions,while the SKFD algorithms essentially work on the generating kernel from a given symmetric function and are therefore suitable for non-kernels as well as kernels.Finally,we outline the tensor-based feature extraction methods and discuss ways of extending tensor-based methods to their generating kernel versions. 展开更多
关键词 kernel methods feature extraction principal component analysis(PCA) fisher linear discriminant analysis(FLD or LDA) tensor-based methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部