期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Dissolved Organic Matter Features of Three Adjacent Eastern Mediterranean Urbanized Watersheds
1
作者 Nour Abboud Elias Michel Maatouk +1 位作者 Zeinab Matar Veronique Kazpard 《Open Journal of Modern Hydrology》 CAS 2024年第3期153-173,共21页
Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly unders... Landscape urbanization broadly affects ecosystems in coastal watersheds, but, until now, the influence of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition, and source is poorly understood. To understand how DOM composition varied with urbanization, fluorescence excitation-emission matrices (EEMs) were determined for urban and non-urban waters from upstream to downstream sites along three adjacent coastal watersheds that flow into the Mediterranean Sea. Two humic DOM fluorescent components (humic-like and fulvic-like peaks) and two proteinic components (tyrosine-like and tryptophane-like peaks) were identified by EEM fluorescence. The results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land uses surrounding each body of water. Urban waters show a higher DOM fluorescence index (FI), the highest fluorescence intensity of protein-like manifested also by BIX values, and a lower value of the humification index (HIX) than non-urban waters which were dominated by allochthonous inputs. In addition, the EEM was compared in dry and wet season where higher DOM amounts and FI appeared in summer due to autochthonous production coming from algae growth compared to allochthonous input from rainfall dominated in wet season. The concentration of DOC increased from upstream to downstream for the three rivers, especially Beirut River. The increase in DOC values was observed in both dry and wet seasons by 39 and 19 times respectively compared to upstream (0.93 - 0.91 mgC/L). 展开更多
关键词 Dissolved Organic Matter DOM EEM fluorescence Spectroscopy Autochthonous/Allochthonous DOM Urbanization Upstream/Downstream Wet/Dry Season
下载PDF
Characteristics of dissolved organic matter(DOM) in leachate with different landfill ages 被引量:55
2
作者 HUO Shouliang XI Beidou +3 位作者 YU Haichan HE Liansheng FAN Shilei LIU Hongliang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期492-498,共7页
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic ac... The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age. 展开更多
关键词 dissolved organic matter (DOM) fluorescence eems DOM fractionafion LANDFILL LEACHATE
下载PDF
Fractionation of soil organic carbon in a calcareous soil after longterm tillage and straw residue management 被引量:3
3
作者 LI Teng-teng ZHANG Jiang-zhou +2 位作者 ZHANG Hong-yan Peter CHRISITE ZHANG Jun-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3611-3625,共15页
No-tillage(NT)and straw return(S)collectively affect soil organic carbon(SOC).However,changes in the organic carbon pool have been under-investigated.Here,we assessed the quantity and quality of SOC after 11 years of ... No-tillage(NT)and straw return(S)collectively affect soil organic carbon(SOC).However,changes in the organic carbon pool have been under-investigated.Here,we assessed the quantity and quality of SOC after 11 years of tillage and straw return on the North China Plain.Concentrations of SOC and its labile fractions(particulate organic carbon(POC),potassium permanganate-oxidizable organic carbon(POXC),microbial biomass carbon(MBC),and dissolved organic carbon(DOC)),components of DOC by fluorescence spectroscopy combined with parallel factor analysis(PARAFAC),and the chemical composition of SOC by 13C NMR(nuclear magnetic resonance)spectroscopy were explored.Treatments comprised conventional tillage(CT)and NT under straw removal(S0),return of wheat straw only(S1),or return of both wheat straw and maize residue(S2).Straw return significantly increased the concentrations and stocks of SOC at 0–20 cm depth,but NT stratified them with enrichment at 0–10 cm and a decrease at 10–20 cm compared to CT,especially under S2.Labile C fractions showed similar patterns of variation to that of SOC,with POC and POXC more sensitive to straw return and the former more sensitive to tillage.Six fluorescence components of DOC were identified,mainly comprising humic-like substances with smaller amounts of fulvic acid-like substances and tryptophan.Straw return significantly decreased the fluorescence index(FI)and autochthonous index(BIX)and increased the humification index(HIX).No-tillage generally increased HIX in topsoil but decreased it and increased the FI and BIX below the topsoil.Relative abudance order of the chemical composition of SOC was:O-alkyl C>alkylC>aromatic-C>carbonyl-C.Overall,NT under S2 effectively increased SOC and its labile C forms and DOC humification in topsoil and microbially-derived DOC below the topsoil.Return of both wheat and maize straw was a decisive factor in promoting SOC in the plow layer.The stratification of SOC under NT may confer a long-term influence on carbon sequestration. 展开更多
关键词 soil organic carbon labile C fractions EEM fluorescence PARAFAC analysis 13C NMR spectrometry
下载PDF
Chemical properties of colored dissolved organic matter in the sea-surface microlayer and subsurface water of Jiaozhou Bay, China in autumn and winter
4
作者 ZHANG Jing YANG Guipeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第6期26-39,共14页
The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and muni... The distribution and chemical properties of chromophoric dissolved organic matter (CDOM) in the Jiaozhou Bay, China were examined during four cruises in 2010-2011. The influence of freshwater and industrial and municipal sewage along the eastern coast of the bay was clearly evident as CDOM level- s (defined as a30s), and dissolved organic carbon (DOC) concentrations were well correlated with salinity during all the cruises. Moreover, DOC concentrations were significantly correlated with chlorophyll a con- centrations in the surface microlayer as well as in the subsurface water. The concentrations of DOC and CDOM displayed a gradually decreasing trend from the northwestern and eastern coast to the central hay, and the values and gradients of their concentrations on the eastern coast were generally higher than those on the western coast. In addition, CDOM and DOC levels were generally higher in the surface microlayer than in the subsurface water. In comparison with DOC, CDOM exhibited a greater extent of enrichment in the microlayer in each cruise, with average enrichment factor (EF) values of 1.38 and 1.84, respectively. Four fluorescent components were identified from the surface microlayer and subsurface water samples and could be distinguished as peak A, peak T, peak B and peak M. For all the cruises, peak A levels were higher in the surface microlayer than in the subsurface water. This pattern of variation might be attributed to the terrestrial input. 展开更多
关键词 colored dissolved organic matter (CDOM) absorption coefficient dissolved organic carbon (DOC) fluorescence excitation emission matrix eems Iiaozhou Bay
下载PDF
Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis 被引量:39
5
作者 Weidong Guo Jing Xu +3 位作者 Jiangping Wang Yingrou Wen Jianfu Zhuo Yuchao Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第11期1728-1734,共7页
Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of... Wastewater dissolved organic matter (DOM) from different processing stages of a sewage treatment plant in Xiamen was characterized using fluorescence and absorption spectroscopy. Parallel factor analysis modeling of excitation-emission matrix spectra revealed five fluorescent components occurring in sewage DOM: one protein-like (C1), three humic-like (C2, C4 and C5) and one xenobiotic-like (C3) components. During the aerated grit chamber and primary sedimentation tank stage, there was only a slight decrease in fluorescence intensity and the absorption coefficient at 350 nm (a 350 ). During the second aeration stage, high concentration of protein-like and short-wavelength-excited humic-like components were significantly degraded accompanied by significant loss of DOC (80%) and a 350 (30%), indicating that C1 and C2 were the dominant constituents of sewage DOM. As a result, long-wavelength- excited C4 and C5 became the dominant humic-like components and the DOM molecular size inferred from the variation of spectral slope S (300–650 nm) and specific absorption (a 280 /DOC) increased. Combination use of F max of C1 and the ratio of C1/C5, or a 350 may provide a quantitative indication for the relative amount of raw or treated sewage in aquatic environment. 展开更多
关键词 dissolved organic matter SEWAGE fluorescence EEM parallel factor analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部