High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M...High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.展开更多
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen...Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.展开更多
By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility o...By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility of roasting process of activated fly ash by Na_(2)CO_(3)was discussed based on thermodynamic analysis.The experimental results showed that Na_(2)CO_(3)gradually reactes with mullite over 700 K to produce NaAlSiO_(4).The optimal process conditions for the activation stage are:a material ratio of 1:1 between sodium carbonate and fly ash,a calcination temperature of 900℃,and a calcination time of 2.5 hours.Under these conditions,the leaching rate of aluminum is 90.3%.By comparing the SEM and XRD analysis of raw and clinker materials,it could be concluded that the mullite phase of fly ash is almost completely destroyed and transformed into sodium aluminosilicate with good acid solubility.展开更多
The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon...CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.展开更多
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa...The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.展开更多
Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials...Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.展开更多
Fly ash is a waste produced from burning of coals in thermal power stations. The staggering increase in the production of fly ash and its disposal in an environment friendly manner is increasingly becoming a matter of...Fly ash is a waste produced from burning of coals in thermal power stations. The staggering increase in the production of fly ash and its disposal in an environment friendly manner is increasingly becoming a matter of global concern. Many efforts have been made to use the fly ash in various geotechnical applications viz. embankment, roadway, railway, backfill material. In this study, PRPs (plastic recycled polymers) were mixed with fly ash at different mix ratios so as to inspect its influence on the geotechnical properties of fly ash. In this regard, the laboratory study includes Atterberg limits, compaction characteristics, unconfined compressive strength, direct shear test, Triaxial shear test and X-ray fluorescence test. Tests were carried out on only fly ash and treated fly ash with PRPs. Results indicate increase in MDD (maximum dry density) and also in shear parameters of the fly ash with inclusion of PRPs.展开更多
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>...This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.展开更多
The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh sta...The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh state,as well as their compressive strength at various ages.Microstructure(SEM and XRD)of blended SCC systems were studied.Also,the thermogravimetry behavior of blended SCC specimens were researched.According to the evaluated results,incorporating up to 20%UFFA into fresh concrete improved its performance due to its engineered fine particle size and spherical geometry,both of which contribute to the enhancement of characteristics.Blends of 25%and 30%of UFFA show effect on the water-binder ratio and chemical enhancer dosage,resulting in a loss of homogeneity in fresh SCC systems.The reduced particle size,increased amorphous content,and increased surface area all contribute to the pozzolanic reactivity of the early and later ages,resulting in denser packing and thus an increase in compressive strength.The experimental results indicate that UFFA enhances the properties of SCC in both its fresh and hardened states,which can be attributed to the particles’fineness and their relative effect on SCC.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement...The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.展开更多
Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal indust...Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal industry,was developed.Fly ash hybridized with ZnO(FAeZn)was synthesized as a potential photocatalyst for dye discoloration.The synthesized photocatalyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and ultravioletevisible/near infra-red spectroscopy.The photocatalytic activity was examined with the discoloration of methylene blue used as synthetic dye wastewater.All the experiments were performed in direct sunlight.The photocatalytic performance of FAeZn was found to be better than that of ZnO and the conventionally popular TiO2.The LangmuireHinshelwood model rate constant values of ZnO,TiO2,and FAeZn were found to be 0.016 min1,0.017 min1,and 0.020 min1,respectively.There were two reasons for this:(1)FAeZn was able to utilize both ultraviolet and visible parts of the solar spectrum,and(2)its BrunauereEmmetteTeller surface area and porosity were significantly enhanced.This led to increased photon absorption and dye adsorption,thus exhibiting an energy-efficient performance.Therefore,FAeZn,partly derived from waste,can serve as a suitable material for environmental remediation and practical solar energy applications.展开更多
A new type of composite filler was designed by a modified sol-gel method using fly ash(FA),Fe(NO_(3))_(3)·9H_(2)O,and Ni(NO_(3))_(2)·6H_(2)O as raw materials.The composite filler was a spherical core-shell s...A new type of composite filler was designed by a modified sol-gel method using fly ash(FA),Fe(NO_(3))_(3)·9H_(2)O,and Ni(NO_(3))_(2)·6H_(2)O as raw materials.The composite filler was a spherical core-shell structure composed of FA as the core and NiFe_(2)O_(4)as the shell.Further,the composite filler was added into the silicone rubber to fabricate the high temperature vulcanized microwave absorption materials;X-ray diffraction,fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscope confirmed that NiFe_(2)O_(4)was successfully coated on the surface of FA and formed a uniform and continuous coating layer.As expected,silicone rubber filled with the composite filler had a minimum reflection loss of-23.8 dB at 17.5 GHz with the thickness of 1.8 mm,while the effective absorption bandwidth was as high as 12 GHz.The addition of the composite filler greatly enhanced the microwave absorption properties of the system,which was resulted from multiple losses mechanism:interface polarization losses,magnetic losses,and multiple reflection losses.Also,silicone rubber filled with the composite filler exhibited excellent thermal stability,flexibility,environmental resistance,and hydrophobicity compared with traditional silicone rubber.Therefore,this work not only responds to the green chemistry to achieve efficient FA recovery,but also devises a new strategy to prepare microwave absorption materials with strong potential for civilian applications.展开更多
The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI...The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI)on its mechanical performances.This research shows that,after optimization,the concrete has a compressive strength of 20.8 MPa,a flexural strength of 3.4 MPa,and a compressive modulus of elasticity of 19.2 GPa.The main factor influencing 28 and 90 d compressive strength is fly ash content,water-binder ratio,and early strength agent content.展开更多
The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomateri...The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomaterial CSH-the hydration product of cement effectively solves these measures’disadvantages,such as excessive energy consumption,thermal stress damage,and the introduction of external ions.In this paper,the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time,workability,and mechanical properties and analyzed at the microscopic level using hydration temperature,XRD,and SEM.The results showed that under the same workability,CSH could significantly reduce the amount of admixture,shorten the final setting time,almost not affect the initial setting time,and accelerate the hydration of cement.At the optimum dose of 5%,the mechanical properties of the specimens were improved by more than 98%within 12 h of hydration,resulting in an earlier release time of 12 h and no risk of strength inversion later.The results of this paper give theoretical support to the behavior of precast components under steam-free curing.展开更多
The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor ...The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor location curves, and the bond stress-anchor position curves of the pullout specimens with various fly ash contents are obtained. Results indicate that the bond performance of concrete and steel bars can be improved and the distribution of steel strain along the anchorage length tends to be more uniform by adding fly ash in concrete specimens, and both ultimate bond stress and ultimate slip deformation increase the most when 20% of specimens′ content is fly ash.展开更多
The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum w...Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum were investigated comprehensively. The phase and morphology of coal fly ash and solid residues after reaction were analyzed by XRD, SEM and IR. The optimal technological conditions for extracting aluminum from coal fly ash were eventually confirmed that coal fly ash with size of 74 μm and sulfuric acid with concentration of 50% are mixed in pressure reaction kettle to react for 4 h at 180 ℃. Under the optimal conditions, the extraction efficiency of aluminum can reach 82.4%.展开更多
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金supported by the key program of the National Natural Science Foundation of China(52236008).
文摘High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.
基金financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.
基金Funded by the National Natural Science Foundation of China(No.U1710257)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0656)+2 种基金the Doctoral Research Foundation of Taiyuan University of Science and Technology,China(No.20142001)the Open Foundation Program of Key Laboratory for Ecological Metallurgy of Multimetallic Mineral,Ministry of Education,China(No.2020003)the Supported by Fundamental Research Program of Shanxi Province,China(No.202103021224281)。
文摘By using high-alumina fly ash as raw material,a process was proposed for activating the fly ash with Na_(2)CO_(3)calcination and extracting aluminum from activated clinker with sulfuric acid leaching.The feasibility of roasting process of activated fly ash by Na_(2)CO_(3)was discussed based on thermodynamic analysis.The experimental results showed that Na_(2)CO_(3)gradually reactes with mullite over 700 K to produce NaAlSiO_(4).The optimal process conditions for the activation stage are:a material ratio of 1:1 between sodium carbonate and fly ash,a calcination temperature of 900℃,and a calcination time of 2.5 hours.Under these conditions,the leaching rate of aluminum is 90.3%.By comparing the SEM and XRD analysis of raw and clinker materials,it could be concluded that the mullite phase of fly ash is almost completely destroyed and transformed into sodium aluminosilicate with good acid solubility.
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金National Natural Science Foundation of China(21706172)Shanxi Province Natural Science Foundation(202203021221069 and 20210302123167).
文摘CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
基金supported by Major science and technology projects of Gansu Province(22ZD6GA008,22ZD6GA014)National Natural Science Foundation of China(52304368,52164034)+2 种基金Science and Technology Project of Gansu Province(Postdoctoral project at the station)(23JRRA781,23JRRA812)Science and Technology Project of Gansu Province(Special Project of Science and Technology Specialist)(23CXGA0068)The Tamarisk Outstanding Young Talents Program of Lanzhou University of Technology.The 74th batch of China Postdoctoral Science Foundation(Regional Special Support Program)(2023MD744218).
文摘The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide.
文摘Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.
文摘Fly ash is a waste produced from burning of coals in thermal power stations. The staggering increase in the production of fly ash and its disposal in an environment friendly manner is increasingly becoming a matter of global concern. Many efforts have been made to use the fly ash in various geotechnical applications viz. embankment, roadway, railway, backfill material. In this study, PRPs (plastic recycled polymers) were mixed with fly ash at different mix ratios so as to inspect its influence on the geotechnical properties of fly ash. In this regard, the laboratory study includes Atterberg limits, compaction characteristics, unconfined compressive strength, direct shear test, Triaxial shear test and X-ray fluorescence test. Tests were carried out on only fly ash and treated fly ash with PRPs. Results indicate increase in MDD (maximum dry density) and also in shear parameters of the fly ash with inclusion of PRPs.
文摘This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.
文摘The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh state,as well as their compressive strength at various ages.Microstructure(SEM and XRD)of blended SCC systems were studied.Also,the thermogravimetry behavior of blended SCC specimens were researched.According to the evaluated results,incorporating up to 20%UFFA into fresh concrete improved its performance due to its engineered fine particle size and spherical geometry,both of which contribute to the enhancement of characteristics.Blends of 25%and 30%of UFFA show effect on the water-binder ratio and chemical enhancer dosage,resulting in a loss of homogeneity in fresh SCC systems.The reduced particle size,increased amorphous content,and increased surface area all contribute to the pozzolanic reactivity of the early and later ages,resulting in denser packing and thus an increase in compressive strength.The experimental results indicate that UFFA enhances the properties of SCC in both its fresh and hardened states,which can be attributed to the particles’fineness and their relative effect on SCC.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金financially supported by the National Natural Science Foundation of China (Nos.52004272,52122404,52061135111,52174092,and 52074259)the Natural Science Foundation of Jiangsu Province,China (Nos.BK20200660 and BK20220157)+1 种基金the Xuzhou Science and Technology Project,China (Nos.KC22005 and KC21033)the Open Foundation of Shandong Key Laboratory of Mining Disaster Prevention and Control,China (No.SMDPC 202104)。
文摘The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH.
文摘Treating waste with a waste material using freely available solar energy is the most effective way towards sustainable future.In this study,a novel photocatalyst,partly derived from waste material from the coal industry,was developed.Fly ash hybridized with ZnO(FAeZn)was synthesized as a potential photocatalyst for dye discoloration.The synthesized photocatalyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and ultravioletevisible/near infra-red spectroscopy.The photocatalytic activity was examined with the discoloration of methylene blue used as synthetic dye wastewater.All the experiments were performed in direct sunlight.The photocatalytic performance of FAeZn was found to be better than that of ZnO and the conventionally popular TiO2.The LangmuireHinshelwood model rate constant values of ZnO,TiO2,and FAeZn were found to be 0.016 min1,0.017 min1,and 0.020 min1,respectively.There were two reasons for this:(1)FAeZn was able to utilize both ultraviolet and visible parts of the solar spectrum,and(2)its BrunauereEmmetteTeller surface area and porosity were significantly enhanced.This led to increased photon absorption and dye adsorption,thus exhibiting an energy-efficient performance.Therefore,FAeZn,partly derived from waste,can serve as a suitable material for environmental remediation and practical solar energy applications.
文摘A new type of composite filler was designed by a modified sol-gel method using fly ash(FA),Fe(NO_(3))_(3)·9H_(2)O,and Ni(NO_(3))_(2)·6H_(2)O as raw materials.The composite filler was a spherical core-shell structure composed of FA as the core and NiFe_(2)O_(4)as the shell.Further,the composite filler was added into the silicone rubber to fabricate the high temperature vulcanized microwave absorption materials;X-ray diffraction,fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscope confirmed that NiFe_(2)O_(4)was successfully coated on the surface of FA and formed a uniform and continuous coating layer.As expected,silicone rubber filled with the composite filler had a minimum reflection loss of-23.8 dB at 17.5 GHz with the thickness of 1.8 mm,while the effective absorption bandwidth was as high as 12 GHz.The addition of the composite filler greatly enhanced the microwave absorption properties of the system,which was resulted from multiple losses mechanism:interface polarization losses,magnetic losses,and multiple reflection losses.Also,silicone rubber filled with the composite filler exhibited excellent thermal stability,flexibility,environmental resistance,and hydrophobicity compared with traditional silicone rubber.Therefore,this work not only responds to the green chemistry to achieve efficient FA recovery,but also devises a new strategy to prepare microwave absorption materials with strong potential for civilian applications.
基金The Second Batch of Industry-University Cooperative Education Projects in 2021(202102113047)Science and Technology Project of Hubei Construction Department[2019(672)].
文摘The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI)on its mechanical performances.This research shows that,after optimization,the concrete has a compressive strength of 20.8 MPa,a flexural strength of 3.4 MPa,and a compressive modulus of elasticity of 19.2 GPa.The main factor influencing 28 and 90 d compressive strength is fly ash content,water-binder ratio,and early strength agent content.
文摘The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomaterial CSH-the hydration product of cement effectively solves these measures’disadvantages,such as excessive energy consumption,thermal stress damage,and the introduction of external ions.In this paper,the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time,workability,and mechanical properties and analyzed at the microscopic level using hydration temperature,XRD,and SEM.The results showed that under the same workability,CSH could significantly reduce the amount of admixture,shorten the final setting time,almost not affect the initial setting time,and accelerate the hydration of cement.At the optimum dose of 5%,the mechanical properties of the specimens were improved by more than 98%within 12 h of hydration,resulting in an earlier release time of 12 h and no risk of strength inversion later.The results of this paper give theoretical support to the behavior of precast components under steam-free curing.
基金Supported by the Program of Excellent Talents in Six Fields of Jiangsu Province(2008183)~~
文摘The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor location curves, and the bond stress-anchor position curves of the pullout specimens with various fly ash contents are obtained. Results indicate that the bond performance of concrete and steel bars can be improved and the distribution of steel strain along the anchorage length tends to be more uniform by adding fly ash in concrete specimens, and both ultimate bond stress and ultimate slip deformation increase the most when 20% of specimens′ content is fly ash.
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
基金Project (BO210(2008)) supported by the Foundation of "Hundred Talent Program" of Chinese Academic of SciencesProject (2008-G-158) supported by the Scientific and Technological Project of Qinghai Province, China
文摘Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum were investigated comprehensively. The phase and morphology of coal fly ash and solid residues after reaction were analyzed by XRD, SEM and IR. The optimal technological conditions for extracting aluminum from coal fly ash were eventually confirmed that coal fly ash with size of 74 μm and sulfuric acid with concentration of 50% are mixed in pressure reaction kettle to react for 4 h at 180 ℃. Under the optimal conditions, the extraction efficiency of aluminum can reach 82.4%.