Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technol...针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。展开更多
Based on a quantitative analysis of the articles on competitive intelligence in China Journal Net from 1994 to 2000,this article points out the problems in the development of competitive intelligence in China and make...Based on a quantitative analysis of the articles on competitive intelligence in China Journal Net from 1994 to 2000,this article points out the problems in the development of competitive intelligence in China and makes some suggestions and predictions as to how to develop competitive intelligence in China in the future.展开更多
该文初步建立了青岛奥帆赛高分辨率数值模式系统(包括预报模式和释用模式)。预报模式基于Weather Research &Forecast(WRF)模式V3.0,模式设计为网格数60×50×38,水平分辨率500m。在IBM小型机上用8个线程作15 h预报所需机...该文初步建立了青岛奥帆赛高分辨率数值模式系统(包括预报模式和释用模式)。预报模式基于Weather Research &Forecast(WRF)模式V3.0,模式设计为网格数60×50×38,水平分辨率500m。在IBM小型机上用8个线程作15 h预报所需机时约为1 h 20 min,可满足实时业务预报需要。利用高分辨率边界层模式和城市小区尺度模式对该预报结果进行了动力释用(水平分辨率分别为100 m和10 m)。该模式系统于2008年夏季进行了实时运行试验,模式产品在北京奥运气象服务中心青岛分中心使用。结果表明:该模式系统有较强的稳定性和实用性,对城市热岛、海陆风、地形及建筑物影响等局地环流特征有较好的模拟效果。数值试验分析表明:城市化引起城市热岛效应,增大了海陆温差,使海风加强;城市建筑物拖曳作用使风速减小,从而使海风推进速度减缓;精细下垫面资料的引入对海风等局地环流高分辨率数值模拟至关重要。展开更多
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
文摘针对电力负荷的特点,综合考虑了温度及日期类型等因素对日最大负荷的影响,提出了一种采用模糊神经网络进行短期负荷预测的方法,并详细介绍了该方法的实现过程。通过对EUNITE(the European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems)网络提供的实际数据进行详细分析确定了影响日最大负荷的相关因素,进而选择了合适的模糊输入以建立相应的模糊神经网络预测模型,并取得了较为理想的预测结果。算例分析结果充分证明了模糊神经网络在短期电力负荷预测方面具有较好的应用前景。
文摘Based on a quantitative analysis of the articles on competitive intelligence in China Journal Net from 1994 to 2000,this article points out the problems in the development of competitive intelligence in China and makes some suggestions and predictions as to how to develop competitive intelligence in China in the future.
文摘该文初步建立了青岛奥帆赛高分辨率数值模式系统(包括预报模式和释用模式)。预报模式基于Weather Research &Forecast(WRF)模式V3.0,模式设计为网格数60×50×38,水平分辨率500m。在IBM小型机上用8个线程作15 h预报所需机时约为1 h 20 min,可满足实时业务预报需要。利用高分辨率边界层模式和城市小区尺度模式对该预报结果进行了动力释用(水平分辨率分别为100 m和10 m)。该模式系统于2008年夏季进行了实时运行试验,模式产品在北京奥运气象服务中心青岛分中心使用。结果表明:该模式系统有较强的稳定性和实用性,对城市热岛、海陆风、地形及建筑物影响等局地环流特征有较好的模拟效果。数值试验分析表明:城市化引起城市热岛效应,增大了海陆温差,使海风加强;城市建筑物拖曳作用使风速减小,从而使海风推进速度减缓;精细下垫面资料的引入对海风等局地环流高分辨率数值模拟至关重要。