Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ...Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti.展开更多
A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) a...A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.展开更多
Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method t...Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method to prepare carbon-supported Pd M(M = Co, Fe, Ni) alloyed nanodendrites with the assistance of oleylamine and octadecylene. The morphology, structure and composition of the obtained Pd M nanodendrites/C catalysts have been fully characterized. The combination of the dendritic structural feature and alloyed synergy offer higher atomic utilization efficiency, excellent catalytic activity and enhanced stability for the formic acid oxidation reaction(FAOR). Strikingly, the as-synthesized Pd Co nanodendrites/C catalyst could afford a mass current density of 2467.7 A g, which is almost 3.53 and 10.4 times higher than those of lab-made Pd/C sample(698.3 A g) and commercial Pd/C catalyst(237.6 A g), respectively. Furthermore, the PdC o nanodendrites/C catalyst also exhibit superior stability relative to the Pd/C catalysts, make it a promising anodic electrocatalyst in practical fuel cells in the future. Additionally, the present feasible synthetic approach is anticipated to provide a versatile strategy toward the preparation of other metal alloy nanodendrites/carbon nanohybrids.展开更多
The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that ...The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.展开更多
A novel ternary nanocomposite, Pd nanoparticles(NPs)/polyoxometalates(POMs)/reduced graphene oxide(rGO), was prepared by a green, mild, electrochemical-reductionassisted assembly. It is worth noting that the Keg...A novel ternary nanocomposite, Pd nanoparticles(NPs)/polyoxometalates(POMs)/reduced graphene oxide(rGO), was prepared by a green, mild, electrochemical-reductionassisted assembly. It is worth noting that the Keggin-type POM acts as an electrocatalyst as well as a bridging molecule. During the reduction process, POMs transfer the electrons from the electrode to GO, leading to a deep reduction of GO and the content of oxygen-containing groups is decreased to around 6.1%. Meanwhile, the strong adsorption effect between the POM clusters and rGO nanosheets induces the spontaneous assembly of POM on r GO in a uniformly dispersed state, forming a nanocomposite. The ternary Pd NPs/POMs/rGO nanocomposite exhibits higher electrocatalytic activities, better electrochemical stability, and higher resistance to CO poisoning than the Pd/C catalyst towards the formic acid oxidation(FAOR). Especially, the Pd/PW(12)/rGO exhibits the best electrocatalytic performance among three Pd/POMs/rGO composites(POMs = PW(12), SiW(12), PMo(12)).展开更多
The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. In...The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.展开更多
To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of u...To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.展开更多
A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in...A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in using carbon- supported K2PdHCl4/K4Fe^Ⅱ(CN)6 cyanogel as a reaction precursor, generated through the substitution of two chloride ligands by the nitrogen ends of the cyanide ligands on the metal center. The inherent nature of cyanogels can effectively suppress the movement of Pd^0 and Fe^0 nuclei in the crystal, benefiting the formation of the intermetallic, which is otherwise challenging via traditional synthesis techniques. The ordered Pd3Fe/C catalyst exhibits excellent catalytic activity and good cycle stability for the formic acid oxidation (FAO) reaction relative to the properties of disordered Pd3Fe/C and commercial Pd/C catalysts, dernonstrating that the ordered Pd3Fe/C is a promising replacement for commercial Pd-based catalysts. The outstanding performance can be ascribed to the full isolation of active sites in the ordered Pd3Fe structure and the modified electronic structure of the active components. This work provides an effective and novel route to obtain Pd-based intermetallic compounds with potential applications in a wide range of electrocatalysis.展开更多
The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palla...The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palladium phosphide(PdxPy)porous nanotubes(PNTs)with different phosphide content(i.e.,Pd3P and Pd5P2)are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II)complex nanorods and succedent phosphating treatment.During the reduction process,the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture.On the basis of the unique synthetic procedure and structural advantages,Pd3P PNTs with optimized phos phide content show outstanding electroactivity and stability for FAEOR.Im portantly,the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction,which effectively enhances the FAEOR electroactivity of Pd3P PNTs.In view of the facial synthesis,excellent electroactivity,high stability,and unordinary selectivity,Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC.展开更多
Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd...Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.展开更多
Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid e...Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid electrooxidation over a wide potential range because of the improved anti-CO poisoning ability.This catalyst was fabricated by simple freeze-drying of mixture solution of graphene aerogel,polyvinylpyrrolidone,Pd^(2+)and Ni^(2+)and the subsequent thermal annealing reduction approach in the N2/H2 atmosphere.Pd-Ni alloy particles anchored over the folding N-doped graphene surface with a porous hierarchical architecture structure in the 3 D directions.It showed the catalytic performance of its maximum mass activity of 836 m A mg^(-1)in a broad potential range(0.2-0.6 V)for formic acid oxidation.The CO stripping experiment demonstrated its largely improved anti-CO poisoning ability with the peak potential of 0.67 V,approximately 60 and 40 m V less compared to those of Pd/GA-N and Pd/C samples.The high anti-CO poisoning ability and strong electronic effect resulting from the interaction between the3 D GA-N support and the Pd-Ni alloy makes it a promising catalyst for application in direct formic acid fuel cells.展开更多
Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability an...Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability and cost for formic acid electrooxidation(FAEO).Using Pt-and Pd-based nanoclusters as electrocatalysts is a particularly promising strategy to solve the above problem,but two attendant problems need to be solved firstly.(Ⅰ) The controllable synthesis of practicable and stable sub-2 nm clusters remains challenging.(Ⅱ) The catalyzing mechanism of sub-2 nm metal clusters for FAEO has not yet completely understood.Herein,different from traditional solution synthesis,by designing a novel supporting material containing electron-rich and electron-deficient functional groups,size-and dispersioncontrollable synthesis of ~1 nm PtPd nanoclusters is realized by an electrochemical process.The electrocatalytic properties and reaction mechanism of the PtPd nanoclusters for the FAEO were studied by different electrochemical techniques,in-situ fourier transform infrared(FTIR) spectra and density functional theory(DFT) calculations.The tiny PtPd nanoclusters have much higher catalytic activity and durability than commercial Pt/C,Pd/C and 3.5 nm PtPd nanoparticles.The present study shows that the metalreactant interaction plays a decisive role in determining the catalytic activity and cluster-support interaction plays a decisive role in enhancing the durability of electrocatalyst.The ratio and arrangement of Pt and Pd atoms on the surface of 1 nm PtPd cluster as well as the overall valence state,d-band center and specific surface area make them exhibit different catalytic performance and reaction mechanism from nanoparticle catalysts.In addition,in situ FTIR and DFT calculations showed that on the surface of PtPd clusters,the generation of CO_(2)through trans-COOH intermediate is the most optimal reaction pathway for the FAEO.展开更多
Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping c...Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes(CoNC NFs)were designed to improve the selectivity of the direct reaction pathway for efficient FAO.Based on these subtle nanomaterials,the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail.The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO,which is crucial for enhancing the oxidation efficiency of formic acid.In particular,the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1(PtAu/CoNC-3)manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts.The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mg_(Pt)^(-1),which is 26.0 times higher than that of Pt/C.The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C,which indicates that the synergistic effect of Pt,Au,and CoNC NFs is critical for the resistance of Pt to CO poisoning.This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.展开更多
Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in fo...Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in formic acid oxidation, which is a key reaction in direct formic acid fuel cell. The electrochemical measurements including voltammograms and chronoamperograms are used to characterize the catalytic property of Pt-containing nanocomposites for the oxidation of formic acid. In view of the limited literatures on using nanocomposites consisting of semiconductor and noble metals for catalyzing the reactions of polymer electrolyte membrane-based fuel cells, this study provides a helpful exploration for expanding the application of semiconductor-noble metal nanocomposites.展开更多
Exploring a new strategy for the removal of adsorbed CO (CO^(*)) on a Pt surface at a low potential is the key to achieving enhanced catalysis for the formic acid oxidation reaction (FAOR);however, the development of ...Exploring a new strategy for the removal of adsorbed CO (CO^(*)) on a Pt surface at a low potential is the key to achieving enhanced catalysis for the formic acid oxidation reaction (FAOR);however, the development of such a strategy remains a significant challenge. Herein, we report a class of Au/PtCo heterojunction nanowires (HNWs) as efficient electrocatalysts for accelerating the FAOR. This heterojunction structure and the induced Co alloying effects can facilitate formic acid adsorption/activation on Pt with high CO tolerance, generating the FAOR pathway from dehydration to dehydrogenation. The optimized Au_(23)/Pt_(63)Co_(14) HNWs showed the highest specific and mass activities of 11.7 mA cm^(−2)Pt and 6.42 A mg^(−1)Pt reported to date, respectively, which are considerably higher than those of commercial Pt/C. DFT calculations confirmed that the electron-rich Au segment enhances the electronic activity of the PtCo NWs, which not only allows the construction of a highly efficient electron transfer channel for the FAOR but also suppresses CO formation.展开更多
Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocry...Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocrystalline electrocatalysts normally suffer from low catalytic efficiency,severe CO poisoning and rapid activity decay.Herein,we report a novel amorphous Pd Ni Cu P catalyst synthesized with laser liquid ablation as a potential settlement to this issue.The as-obtained amorphous Pd Ni Cu P catalyst exhibits enhanced electrocatalytic performance with the mass activity of 1.61 A mg^(-1)and 737.8 m A mg^(-1)towards methanol oxidation reaction(MOR)and formic acid oxidation reaction(FAOR),respectively.Moreover,amorphous Pd Ni Cu P displays excellent operation stability and CO-poisoning resistance in both alkaline and acidic medium.P was proposed to play the decisive role for forming the amorphous structure and maintaining the catalytic stability in MOR and FAOR processes.This work provided insights for the ration design of active and durable amorphous electrocatalysts applied in direct liquid fuel cells.展开更多
Concave nanostructures may be developed to improve the specific mass activity of a catalyst for formic acid and methanol electro-oxidation. In this work, we report the elctrocatalytic oxidation of methanol and formic ...Concave nanostructures may be developed to improve the specific mass activity of a catalyst for formic acid and methanol electro-oxidation. In this work, we report the elctrocatalytic oxidation of methanol and formic acid in acid medium over concave Pt-Cu-Fe ternary nanocubes(NCs), obtained by the galvanic exchange of Pt and Fe on Cu NCs. The concave Pt-Cu-Fe NCs exhibited improved electrooxidation performance contrasted to Pt-Cu NCs and purchased commercial Pt/C as demonstrated by their improved durability, lower onset potential, and more preferable anti-poisoning properties. These properties are believed to originate from the tailored concave structure of the catalyst and possible synergetic effects among the components of the Pt-Cu-Fe NCs.展开更多
Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to syn...Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system.展开更多
Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au ...Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au core-Pt Au alloy shell nanowires(Au@PtxAu UFNWs).Among them,Au@Pt_(0.077) Au UFNWs exhibit the best performance for formic acid oxidation reaction(FAOR)and hydrogen evolution reaction(HER),which only require applied potentials of 0.29 V and-22.6 m V to achieve a current density of 10 m A cm^(-2),respectively.The corresponding formic acid electrolyzer realizes the electrochemical H2 production at a voltage of only 0.51 V with 10 m A cm^(-2) current density.Density functional theory(DFT)calculations reveal that the Au-riched Pt Au alloy structure can facilitates the direct oxidation pathway of FAOR and consequently elevates the FAOR activity of Au@Pt_(0.077) Au UFNWs.This work provides meaningful insights into the electrochemical H_(2) production from both the construction of advanced bifunctional electrocatalysts and the replacement of OER.展开更多
Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstiti...Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.展开更多
基金Project(10JJ9003) supported by Hunan Provincial Natural Science Foundation and Xiangtan Natural Science United Foundation,China Project(11K023) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti.
基金Supported by the "863" Program of Science and Technology Ministry of China(Nos.2006AA05Z137, 2007AA05Z143 and 2007AA05Z159)National Natural Science Foundation of China(Nos.20433060, 20473038, 20573057 and 20703043)the Natural Science Foundation of Jiangsu Province, China(No.BK2006224).
文摘A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent. This method is very simple. The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity. The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.
基金financial supports from NSFC(no.21576139,21503111 and 21376122)Natural Science Foundation of Jiangsu Province(BK20171473)+2 种基金Natural Science Foundation of Jiangsu Higher Education Institutions of China(16KJB150020)National and Local Joint Engineering Research Center of Biomedical Functional Materialsa project sponsored by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method to prepare carbon-supported Pd M(M = Co, Fe, Ni) alloyed nanodendrites with the assistance of oleylamine and octadecylene. The morphology, structure and composition of the obtained Pd M nanodendrites/C catalysts have been fully characterized. The combination of the dendritic structural feature and alloyed synergy offer higher atomic utilization efficiency, excellent catalytic activity and enhanced stability for the formic acid oxidation reaction(FAOR). Strikingly, the as-synthesized Pd Co nanodendrites/C catalyst could afford a mass current density of 2467.7 A g, which is almost 3.53 and 10.4 times higher than those of lab-made Pd/C sample(698.3 A g) and commercial Pd/C catalyst(237.6 A g), respectively. Furthermore, the PdC o nanodendrites/C catalyst also exhibit superior stability relative to the Pd/C catalysts, make it a promising anodic electrocatalyst in practical fuel cells in the future. Additionally, the present feasible synthetic approach is anticipated to provide a versatile strategy toward the preparation of other metal alloy nanodendrites/carbon nanohybrids.
基金supported by the National Natural Science Foundation of China(No.21872132 and No.21832004)973 Program from the Ministry of Science and Technology of China(No.201503932301)
文摘The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.
基金financially supported by the National Natural Science Foundation of China(No.21571034)the Natural Science Foundation of Fujian Province(No.2014J01033)a Key Item of Education Department of Fujian Province(No.JA13085)
文摘A novel ternary nanocomposite, Pd nanoparticles(NPs)/polyoxometalates(POMs)/reduced graphene oxide(rGO), was prepared by a green, mild, electrochemical-reductionassisted assembly. It is worth noting that the Keggin-type POM acts as an electrocatalyst as well as a bridging molecule. During the reduction process, POMs transfer the electrons from the electrode to GO, leading to a deep reduction of GO and the content of oxygen-containing groups is decreased to around 6.1%. Meanwhile, the strong adsorption effect between the POM clusters and rGO nanosheets induces the spontaneous assembly of POM on r GO in a uniformly dispersed state, forming a nanocomposite. The ternary Pd NPs/POMs/rGO nanocomposite exhibits higher electrocatalytic activities, better electrochemical stability, and higher resistance to CO poisoning than the Pd/C catalyst towards the formic acid oxidation(FAOR). Especially, the Pd/PW(12)/rGO exhibits the best electrocatalytic performance among three Pd/POMs/rGO composites(POMs = PW(12), SiW(12), PMo(12)).
基金This work was supported by one hundred Tal- ents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21273215), 973 program from the Ministry of Sci- ence and Technology of China (No.2010CB923302).
文摘The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.
文摘To address the insufficient electrocatalytic activity and stability of formic acid oxidation reaction (FAOR) electrocatalysts, as well as their high cost, we herein demonstrate the facile hydrothermal synthesis of ultrathin AgPt alloy nanowires using amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) as a structure-directing agent. The initial generation of AgC1 precipitates, subsequent formation of AgPt nanoparticles, and their oriented attachment account for the formation of ultrathin AgPt alloy nanowires. Benefiting from their unique one-dimensional (1D) anisotropy and alloyed composition, the prepared ultrathin AgPt nanowires exhibit a superior electrocatalytic activity and better CO tolerance for the FAOR, reaching a 1.6-fold and 3.7-fold higher specific current density than AgPt nanoparticles and a commercial Pt black catalyst, respectively. Additionally, the ultrathin AgPt alloy nanowires manifest a superior electrochemical stability and structural robustness during electrocatalysis, making them a promising FAOR electrocatalyst. This work not only provides a reliable strategy for the synthesis of noble metal-based ultrathin nanowires, but also opens an avenue towards the rational des ign of efficient electrocatalysts for fuel cell systems.
文摘A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in using carbon- supported K2PdHCl4/K4Fe^Ⅱ(CN)6 cyanogel as a reaction precursor, generated through the substitution of two chloride ligands by the nitrogen ends of the cyanide ligands on the metal center. The inherent nature of cyanogels can effectively suppress the movement of Pd^0 and Fe^0 nuclei in the crystal, benefiting the formation of the intermetallic, which is otherwise challenging via traditional synthesis techniques. The ordered Pd3Fe/C catalyst exhibits excellent catalytic activity and good cycle stability for the formic acid oxidation (FAO) reaction relative to the properties of disordered Pd3Fe/C and commercial Pd/C catalysts, dernonstrating that the ordered Pd3Fe/C is a promising replacement for commercial Pd-based catalysts. The outstanding performance can be ascribed to the full isolation of active sites in the ordered Pd3Fe structure and the modified electronic structure of the active components. This work provides an effective and novel route to obtain Pd-based intermetallic compounds with potential applications in a wide range of electrocatalysis.
基金supported by the National Natural Science Foundation of China(21875133 and 51873100)Natural Science Foundation of Shaanxi Province(2020JZ-23)+2 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(S202010718130)Fundamental Research Funds for the Central Universities(GK202101005,GK202103062,and 2021CBLZ004)the 111 Project(B14041).
文摘The development of an efficient catalyst for formic acid electrocatalytic oxidation reaction(FAEOR)is of great significance to accelerate the commercial application of direct formic acid fuel cells(DFAFC).Herein,palladium phosphide(PdxPy)porous nanotubes(PNTs)with different phosphide content(i.e.,Pd3P and Pd5P2)are prepared by combining the self-template reduction method of dimethylglyoxime-Pd(II)complex nanorods and succedent phosphating treatment.During the reduction process,the self-removal of the template and the continual inside-outside Ostwald ripening phenomenon are responsible for the generation of the one-dimensional hollow and porous architecture.On the basis of the unique synthetic procedure and structural advantages,Pd3P PNTs with optimized phos phide content show outstanding electroactivity and stability for FAEOR.Im portantly,the strong electronic effect between Pd and P promotes the direct pathway of FAEOR and inhibits the occurrence of the formic acid decomposition reaction,which effectively enhances the FAEOR electroactivity of Pd3P PNTs.In view of the facial synthesis,excellent electroactivity,high stability,and unordinary selectivity,Pd3P PNTs have the potential to be an efficient anode electrocatalyst for DFAFC.
基金supported by the Natural Science Foundation of Shandong Province(ZR2016BM31)the Science and Technology Foundation of Jinan City(201311035)~~
文摘Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.
基金supported by the National Natural Science Foundation of China(21972124,21603041)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution+1 种基金the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the Research Foundation of Department of Education of Yunnan Province(2020Y0018)。
文摘Anti-CO poisoning ability is significant in formic acid oxidation in the fuel cell technique.Herein,Pd Ni alloy supported on N-doped graphene aerogel(Pd Ni/GA-N)was found to have catalytic ability toward formic acid electrooxidation over a wide potential range because of the improved anti-CO poisoning ability.This catalyst was fabricated by simple freeze-drying of mixture solution of graphene aerogel,polyvinylpyrrolidone,Pd^(2+)and Ni^(2+)and the subsequent thermal annealing reduction approach in the N2/H2 atmosphere.Pd-Ni alloy particles anchored over the folding N-doped graphene surface with a porous hierarchical architecture structure in the 3 D directions.It showed the catalytic performance of its maximum mass activity of 836 m A mg^(-1)in a broad potential range(0.2-0.6 V)for formic acid oxidation.The CO stripping experiment demonstrated its largely improved anti-CO poisoning ability with the peak potential of 0.67 V,approximately 60 and 40 m V less compared to those of Pd/GA-N and Pd/C samples.The high anti-CO poisoning ability and strong electronic effect resulting from the interaction between the3 D GA-N support and the Pd-Ni alloy makes it a promising catalyst for application in direct formic acid fuel cells.
基金supported by the National Key Research and Development Plan(2020YFB1506001)the Natural Science Foundation of Guangxi Province(2019GXNSFGA245003)+1 种基金the National Natural Science Foundation of China(Nos.22272036,21575134,21773224)the Guangxi Normal University Research Grant(2022TD)。
文摘Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability and cost for formic acid electrooxidation(FAEO).Using Pt-and Pd-based nanoclusters as electrocatalysts is a particularly promising strategy to solve the above problem,but two attendant problems need to be solved firstly.(Ⅰ) The controllable synthesis of practicable and stable sub-2 nm clusters remains challenging.(Ⅱ) The catalyzing mechanism of sub-2 nm metal clusters for FAEO has not yet completely understood.Herein,different from traditional solution synthesis,by designing a novel supporting material containing electron-rich and electron-deficient functional groups,size-and dispersioncontrollable synthesis of ~1 nm PtPd nanoclusters is realized by an electrochemical process.The electrocatalytic properties and reaction mechanism of the PtPd nanoclusters for the FAEO were studied by different electrochemical techniques,in-situ fourier transform infrared(FTIR) spectra and density functional theory(DFT) calculations.The tiny PtPd nanoclusters have much higher catalytic activity and durability than commercial Pt/C,Pd/C and 3.5 nm PtPd nanoparticles.The present study shows that the metalreactant interaction plays a decisive role in determining the catalytic activity and cluster-support interaction plays a decisive role in enhancing the durability of electrocatalyst.The ratio and arrangement of Pt and Pd atoms on the surface of 1 nm PtPd cluster as well as the overall valence state,d-band center and specific surface area make them exhibit different catalytic performance and reaction mechanism from nanoparticle catalysts.In addition,in situ FTIR and DFT calculations showed that on the surface of PtPd clusters,the generation of CO_(2)through trans-COOH intermediate is the most optimal reaction pathway for the FAEO.
基金support from the National Natural Science Foundation of China(Nos.51801188,12034002,and 51971025)the China Postdoctoral Science Foundation(No.2018M632792)+3 种基金program for the Innovation Team of Science and Technology in University of Henan(No.20IRTSTHN014)Excellent Youth Foundation of Henan Scientific Committee(No.202300410356)the CAS Interdisciplinary Innovation Team(No.JCTD-2019-01)Beijing Natural Science Foundation(No.2204085)。
文摘Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes(CoNC NFs)were designed to improve the selectivity of the direct reaction pathway for efficient FAO.Based on these subtle nanomaterials,the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail.The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO,which is crucial for enhancing the oxidation efficiency of formic acid.In particular,the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1(PtAu/CoNC-3)manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts.The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mg_(Pt)^(-1),which is 26.0 times higher than that of Pt/C.The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C,which indicates that the synergistic effect of Pt,Au,and CoNC NFs is critical for the resistance of Pt to CO poisoning.This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.
基金Financial support from the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (No.: 21173226, 21376247)State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (MPCS-2011-D-08, MPCS-2010C-02)
文摘Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in formic acid oxidation, which is a key reaction in direct formic acid fuel cell. The electrochemical measurements including voltammograms and chronoamperograms are used to characterize the catalytic property of Pt-containing nanocomposites for the oxidation of formic acid. In view of the limited literatures on using nanocomposites consisting of semiconductor and noble metals for catalyzing the reactions of polymer electrolyte membrane-based fuel cells, this study provides a helpful exploration for expanding the application of semiconductor-noble metal nanocomposites.
基金The authors are grateful for the financial support of this work from the National Science Fund for Distinguished Young Scholars(No.52025133)Tencent Foundation through the XPLORER PRIZE,the Beijing Natural Science Foundation(JQ18005)Young Thousand Talented Program,and Postdoctoral Science Foundation of China.(2020M680200).
文摘Exploring a new strategy for the removal of adsorbed CO (CO^(*)) on a Pt surface at a low potential is the key to achieving enhanced catalysis for the formic acid oxidation reaction (FAOR);however, the development of such a strategy remains a significant challenge. Herein, we report a class of Au/PtCo heterojunction nanowires (HNWs) as efficient electrocatalysts for accelerating the FAOR. This heterojunction structure and the induced Co alloying effects can facilitate formic acid adsorption/activation on Pt with high CO tolerance, generating the FAOR pathway from dehydration to dehydrogenation. The optimized Au_(23)/Pt_(63)Co_(14) HNWs showed the highest specific and mass activities of 11.7 mA cm^(−2)Pt and 6.42 A mg^(−1)Pt reported to date, respectively, which are considerably higher than those of commercial Pt/C. DFT calculations confirmed that the electron-rich Au segment enhances the electronic activity of the PtCo NWs, which not only allows the construction of a highly efficient electron transfer channel for the FAOR but also suppresses CO formation.
基金supported by the National Natural Science Foundation of China(Nos.52177220,52001219 and U1601216)。
文摘Highly active and durable electrocatalytic materials towards small molecules electro-oxidation reaction are critical to the large-scale commercial applications of direct liquid fuel cells.Unfortunately,current nanocrystalline electrocatalysts normally suffer from low catalytic efficiency,severe CO poisoning and rapid activity decay.Herein,we report a novel amorphous Pd Ni Cu P catalyst synthesized with laser liquid ablation as a potential settlement to this issue.The as-obtained amorphous Pd Ni Cu P catalyst exhibits enhanced electrocatalytic performance with the mass activity of 1.61 A mg^(-1)and 737.8 m A mg^(-1)towards methanol oxidation reaction(MOR)and formic acid oxidation reaction(FAOR),respectively.Moreover,amorphous Pd Ni Cu P displays excellent operation stability and CO-poisoning resistance in both alkaline and acidic medium.P was proposed to play the decisive role for forming the amorphous structure and maintaining the catalytic stability in MOR and FAOR processes.This work provided insights for the ration design of active and durable amorphous electrocatalysts applied in direct liquid fuel cells.
文摘Concave nanostructures may be developed to improve the specific mass activity of a catalyst for formic acid and methanol electro-oxidation. In this work, we report the elctrocatalytic oxidation of methanol and formic acid in acid medium over concave Pt-Cu-Fe ternary nanocubes(NCs), obtained by the galvanic exchange of Pt and Fe on Cu NCs. The concave Pt-Cu-Fe NCs exhibited improved electrooxidation performance contrasted to Pt-Cu NCs and purchased commercial Pt/C as demonstrated by their improved durability, lower onset potential, and more preferable anti-poisoning properties. These properties are believed to originate from the tailored concave structure of the catalyst and possible synergetic effects among the components of the Pt-Cu-Fe NCs.
基金sponsored by the National Natural Science Foundation of China(22272103)the Natural Science Foundation of Shaanxi Province(2020JZ-23,2019KJXX-021,and 2020JM269)+7 种基金the Key Research and Development Program of Shaanxi(2020SF-355)the Science and Technology Innovation Team of Shaanxi Province(2022TD-35)the University Engineering Research Center of Crystal Growth and Applications of Guangdong Province(2020GCZX005)the Special Innovative Projects of Guangdong Province(2020KTSCX125)the Shenzhen Stable Supporting Program(SZWD2021015)the Fundamental Research Funds for the Central Universities(GK202202001)the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials at Guangxi University(2021GXYSOF02)the 111 Project(B14041)。
文摘Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system.
基金supported by the Natural Science Foundation of Shaanxi Province(2020JZ-23)the Fundamental Research Funds for the Central Universities(GK201901002,GK202101005,2020CSLZ012 and 2019TS007)+4 种基金the Innovation Team Project for Graduate Student at Shaanxi Normal University(TD2020048Y)the Key Research and Development Program of Shaanxi(Program No.2020SF-355)the National Training Program of Innovation and Entrepreneurship for Undergraduates(S202010718130)the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials at Guangxi University(2021GXYSOF02)the 111 Project(B14041)。
文摘Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au core-Pt Au alloy shell nanowires(Au@PtxAu UFNWs).Among them,Au@Pt_(0.077) Au UFNWs exhibit the best performance for formic acid oxidation reaction(FAOR)and hydrogen evolution reaction(HER),which only require applied potentials of 0.29 V and-22.6 m V to achieve a current density of 10 m A cm^(-2),respectively.The corresponding formic acid electrolyzer realizes the electrochemical H2 production at a voltage of only 0.51 V with 10 m A cm^(-2) current density.Density functional theory(DFT)calculations reveal that the Au-riched Pt Au alloy structure can facilitates the direct oxidation pathway of FAOR and consequently elevates the FAOR activity of Au@Pt_(0.077) Au UFNWs.This work provides meaningful insights into the electrochemical H_(2) production from both the construction of advanced bifunctional electrocatalysts and the replacement of OER.
基金the financial support from the National Natural Science Foundation of China(51904191)the Overseas High-level Talents Foundation of Shenzhen。
文摘Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.