In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical...In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.展开更多
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
In this article, we study the existence, uniqueness, stability through continuous dependence on initial conditions and Hyers-Ulam-Rassias stability results for random impulsive fractional differential systems by relax...In this article, we study the existence, uniqueness, stability through continuous dependence on initial conditions and Hyers-Ulam-Rassias stability results for random impulsive fractional differential systems by relaxing the linear growth conditions. Finally, we give examples to illustrate its applications.展开更多
In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term witho...In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.展开更多
The problem of sliding mode control for fractional differential systems with statedelay is considered.A novel sliding surface is proposed and a controller is designed correspondingly,such that the state starting from ...The problem of sliding mode control for fractional differential systems with statedelay is considered.A novel sliding surface is proposed and a controller is designed correspondingly,such that the state starting from any initial value will move toward the switching surface and reach the sliding surface in finite time and the state variables on the sliding surface will converge to equilibrium point.And the stability of the proposed control design is discussed.展开更多
It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary l...It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.展开更多
In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then...In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.展开更多
In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional ...In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.展开更多
This article investigates the fractional derivative order identification, the coefficient identification, and the source identification in the fractional diffusion problems. If 1 〈 α〈 2, we prove the unique determi...This article investigates the fractional derivative order identification, the coefficient identification, and the source identification in the fractional diffusion problems. If 1 〈 α〈 2, we prove the unique determination of the fractional derivative order and the dif- fusion coefficient p(x) by fo u(0, s)ds, 0 〈 t 〈 T for one-dimensional fractional diffusion-wave equations. Besides, if 0 〈 α 〈 1, we show the unique determination of the source term f(x, y) by U(0, 0, t), 0 〈 t 〈 T for two-dimensional fractional diffusion equations. Here, a denotes the fractional derivative order over t.展开更多
Nonlinear delay Caputo fractional differential equations with non-instantaneous impulses are studied and we consider the general case of delay,depending on both the time and the state variable.The case when the lower ...Nonlinear delay Caputo fractional differential equations with non-instantaneous impulses are studied and we consider the general case of delay,depending on both the time and the state variable.The case when the lower limit of the Caputo fractional derivative is fixed at the initial time,and the case when the lower limit of the fractional derivative is changed at the end of each interval of action of the impulse are studied.Practical stability properties,based on the modified Razumikhin method are investigated.Several examples are given in this paper to illustrate the results.展开更多
In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By u...In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By using the fixed point theorem in cone,the existence of positive solutions for the boundary value problem is obtained. Some examples are also presented to illustrate the application of our main results.展开更多
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
In this paper, a new numerical method for solving fractional differential equations(FDEs) is presented. The method is based upon the fractional Taylor basis approximations. The operational matrix of the fractional int...In this paper, a new numerical method for solving fractional differential equations(FDEs) is presented. The method is based upon the fractional Taylor basis approximations. The operational matrix of the fractional integration for the fractional Taylor basis is introduced. This matrix is then utilized to reduce the solution of the fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of this technique.展开更多
In this article, two numerical techniques, namely, the homotopy perturbation and the matrix approach methods have been proposed and implemented to obtain an approximate solution of the linear fractional differential e...In this article, two numerical techniques, namely, the homotopy perturbation and the matrix approach methods have been proposed and implemented to obtain an approximate solution of the linear fractional differential equation. To test the effectiveness of these methods, two numerical examples with known exact solution are illustrated. Numerical experiments show that the accuracy of these methods is in a good agreement with the exact solution. However, a comparison between these methods shows that the matrix approach method provides more accurate results.展开更多
In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t...In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.展开更多
An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the ex...An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived. Using a fractional predictorcorrector method, a numerical method was presented for the specified system. An example was given to illustrate the obtained results.展开更多
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
基金supported by NSF of Shaanxi Province(Grant No.2023-JC-YB-011).
文摘In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
文摘In this article, we study the existence, uniqueness, stability through continuous dependence on initial conditions and Hyers-Ulam-Rassias stability results for random impulsive fractional differential systems by relaxing the linear growth conditions. Finally, we give examples to illustrate its applications.
基金supported by Science and Technology Project of Chongqing Municipal Education Committee (kJ110501) of ChinaNatural Science Foundation Project of CQ CSTC (cstc2012jjA20016) of ChinaNational Natural Science Foundation of China (11101298)
文摘In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.
基金Supported by the National Nature Science Foundation of China(10771001)Supported by the Special Research Fund for the Doctoral Program of the Ministry of Education of China(20093401110001)+1 种基金Supported by the Major Programs of Natural Science Research in Anhui Universities(KJ2010ZD02)Supported by the the Program of Natural Science Research in Anhui Universities(KJ2010B076)
文摘The problem of sliding mode control for fractional differential systems with statedelay is considered.A novel sliding surface is proposed and a controller is designed correspondingly,such that the state starting from any initial value will move toward the switching surface and reach the sliding surface in finite time and the state variables on the sliding surface will converge to equilibrium point.And the stability of the proposed control design is discussed.
文摘It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
基金the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II
文摘In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.
文摘In this paper, first we obtain some new fractional integral inequalities. Then using these inequalities and fixed point theorems, we prove the existence of solutions for two different classes of functional fractional differential equations.
基金supported by the National Natural Science Foundation of China (11226166 and 11001033)Scientific Research Fund of Hunan Provinical Education (11C0052)
文摘This article investigates the fractional derivative order identification, the coefficient identification, and the source identification in the fractional diffusion problems. If 1 〈 α〈 2, we prove the unique determination of the fractional derivative order and the dif- fusion coefficient p(x) by fo u(0, s)ds, 0 〈 t 〈 T for one-dimensional fractional diffusion-wave equations. Besides, if 0 〈 α 〈 1, we show the unique determination of the source term f(x, y) by U(0, 0, t), 0 〈 t 〈 T for two-dimensional fractional diffusion equations. Here, a denotes the fractional derivative order over t.
基金supported by Portuguese funds through the CIDMA-Center for Research and Development in Mathematics and Applicationsthe Portuguese Foundation for Science and Technology(FCT-Fundação para a Ciência e a Tecnologia),within project UIDB/04106/2020Fund Scientific Research MU21FMI007,University of Plovdiv"Paisii Hilendarski".
文摘Nonlinear delay Caputo fractional differential equations with non-instantaneous impulses are studied and we consider the general case of delay,depending on both the time and the state variable.The case when the lower limit of the Caputo fractional derivative is fixed at the initial time,and the case when the lower limit of the fractional derivative is changed at the end of each interval of action of the impulse are studied.Practical stability properties,based on the modified Razumikhin method are investigated.Several examples are given in this paper to illustrate the results.
基金supported by Natural Science Foundation of China(No.11171220) Support Projects of University of Shanghai for Science and Technology(No.14XPM01)
文摘In this paper,we concern ourselves with the existence of positive solutions for a type of integral boundary value problem of fractional differential equations with the fractional order linear derivative operator. By using the fixed point theorem in cone,the existence of positive solutions for the boundary value problem is obtained. Some examples are also presented to illustrate the application of our main results.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
文摘In this paper, a new numerical method for solving fractional differential equations(FDEs) is presented. The method is based upon the fractional Taylor basis approximations. The operational matrix of the fractional integration for the fractional Taylor basis is introduced. This matrix is then utilized to reduce the solution of the fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of this technique.
文摘In this article, two numerical techniques, namely, the homotopy perturbation and the matrix approach methods have been proposed and implemented to obtain an approximate solution of the linear fractional differential equation. To test the effectiveness of these methods, two numerical examples with known exact solution are illustrated. Numerical experiments show that the accuracy of these methods is in a good agreement with the exact solution. However, a comparison between these methods shows that the matrix approach method provides more accurate results.
文摘In this paper, we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type c D δ 0+ u(t) = f (t, u(t), c D σ 0+ u(t)), t ∈ [0, T ], u(0) = αu(η), u(T ) = βu(η), where 1 〈 δ 〈 2, 0 〈 σ 〈 1, α, β∈ R, η∈ (0, T ), αη(1 -β) + (1-α)(T βη) = 0 and c D δ 0+ , c D σ 0+ are the Caputo fractional derivatives. We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results. Examples are also included to show the applicability of our results.
基金National Natural Science Foundation of China(No.11371087)
文摘An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived. Using a fractional predictorcorrector method, a numerical method was presented for the specified system. An example was given to illustrate the obtained results.