期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures 被引量:2
1
作者 昝祥 贺跃辉 +1 位作者 汪洋 夏源明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期45-51,共7页
Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from ... Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture. 展开更多
关键词 TiAl intermetallics high strain rate elevated temperature character tensile properties fracture mode
下载PDF
Transition of plasticity and fracture mode of Zr-Al-Ni-Cu bulk metallic glasses with network structures 被引量:1
2
作者 蔡安辉 丁大伟 +4 位作者 安伟科 周果君 罗云 李江鸿 彭勇宜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2617-2623,共7页
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch... Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed. 展开更多
关键词 bulk metallic glass PLASTICITY fracture mode network structure
下载PDF
Effect of loading point position on fracture mode of rock
3
作者 饶秋华 孙宗颀 +2 位作者 徐继成 王桂尧 张静宜 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期764-767,共4页
Anti symmetric four point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode Ⅱ... Anti symmetric four point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock, K ⅡC . Numerical and experimental results show that the distance between the inner and outer loading points, L 1+ L 2, has a great influence on stresses at notch tip and fracture mode. When L 1+ L 2>0.5 L or 0.1 L < L 1+ L 2<0.5 L , maximum principal stress σ 1 exceeds the tensile strength σ t. The ratio of τ max / σ 1 is relatively low or high and thus Mode Ⅰ or mixed mode fracture occurs. When L 1+ L 2< 0.1 L , σ 1 is smaller than σ t and the ratio of τ max / σ 1 is much higher, which facilitates the occurrence of Mode Ⅱ fracture. 展开更多
关键词 fracture mode loading point position stress analysis ROCK
下载PDF
Microscopic characteristics of different fracture modes of brittle rock
4
作者 RAO Qiu-hua SUN Zong-qi +2 位作者 WANG Gui-yao XU Ji-cheng ZHANG Jing-yi 《Journal of Central South University》 SCIE EI CAS 2001年第3期175-179,共5页
Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode I, Mode II and mixed mode I–II fracture, respectively. M... Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode I, Mode II and mixed mode I–II fracture, respectively. Microscopic characteristics of the three fracture modes of brittle rock were studied by SEM technique in order to analyze fracture behaviors and better understand fracture mechanisms of different fracture modes of brittle rock. Test results show that the microscopic characteristics of different fracture modes correspond to different fracture mechanisms. The surface of Mode I fracture has a great number of sparse and steep slip-steps with few tearing ridges and shows strong brittleness. In the surface of Mode II fracture there exist many tearing ridges and densely distributed parallel slip-steps and it is attributed to the action of shear stress. The co-action of tensile and shear stresses results in brittle cleavage planes mixed with streamline patterns and tearing ridges in the surface of mixed mode I–II fracture. The measured Mode II fracture toughness K II C and mixed mode I–II fracture toughness K mC are larger than Mode I fracture toughness K I C · K II C is about 3.5 times K I C, and KmC is about 1.2 times K I C. 展开更多
关键词 microscopic characteristic mode II fracture mixed mode fracture ROCK SEM analysis
下载PDF
Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading
5
作者 Kang Wang Peng Chen +5 位作者 Xingyun Sun Yufeng Liu Jiayu Meng Xiaoyuan Li Xiongwei Zheng Chuan Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期122-132,共11页
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th... An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation. 展开更多
关键词 Projectile fragmentation Fragment mass distribution fracture mode Metallographic structure Damage power
下载PDF
Effect of dynamic loading orientation on fracture properties of surrounding rocks in twin tunnels
6
作者 Ze Deng Zheming Zhu +3 位作者 Lei Zhou Leijun Ma Jianwei Huang Yao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期393-409,共17页
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ... For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated. 展开更多
关键词 Twin-tunnel Dynamic load Split Hopkinson pressure bar(SHPB) fracture mode Stress distribution Displacement field distribution
下载PDF
A Review of Experimental Research on the Mode I Fracture Behavior of Bamboo
7
作者 Yue Chen Haitao Li +3 位作者 Lei Gao Wei Xu Rodolfo Lorenzo Milan Gaff 《Journal of Renewable Materials》 SCIE EI 2023年第6期2787-2808,共22页
Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of moder... Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields. 展开更多
关键词 mode I fracture properties test method toughening mechanism fracture damage modes
下载PDF
Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact 被引量:5
8
作者 Gang Wang Li-Hui Lang +2 位作者 Wen-Jun Yu Xi-Na Huang Fei Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期963-974,共12页
2A12 aluminum alloy powders were hot-isostatic-pressed (HIPed) at representative temperatures for investi- gating the variation in microstructure, tensile property and fracture mode of the powder compact. It was fou... 2A12 aluminum alloy powders were hot-isostatic-pressed (HIPed) at representative temperatures for investi- gating the variation in microstructure, tensile property and fracture mode of the powder compact. It was found that the microstructure of raw powders changed from a dendrite structure to an equiaxed structure from room temperature to 600 ℃. The liquid phase produced by the eutectic reaction in the powder was gradually increased and finally formed a liquid pathway that ran through the entire powder from 490 to 600℃. Prior particle boundaries were observed in the powder compacts HIPed at 490 and 520℃. The liquid phase in the powder compacts was squeezed into the powder boundaries and the triple points of powder when HIPed at 580℃. However, the liquid phase located at the triple points of the powder was forced out and moved toward a small powder particle by HIP pressure under an HIPing temperature of 600℃, which led to a decrease in the mechanical properties and relative density. Better comprehensive properties were obtained at HIPing temperatures of 490 and 580℃. The low ductility exhibited by the P/M aluminum alloy HIPed at different temperatures was believed to arise from a combination of the existence of oxide film on the powder particle surface and the distribution characteristics of the liquid phase. Finally, three typical types of de-cohesion were classified. 展开更多
关键词 Powder metallurgy Hot-isostatic-pressing Microstructural evolution fracture mode Aluminum alloy Mechanical properties
原文传递
Microstructure characterization and HCF fracture mode transition for modified 9Cr-1Mo dissimilarly welded joint at different elevated temperatures 被引量:1
9
作者 Chendong Shao Fenggui Lu +2 位作者 Xiongfei Wang Yuming Ding Zhuguo Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1610-1620,共11页
The high cycle fatigue(HCF) tests of modified 9 Cr-1 Mo dissimilarly welded joint were carried out at different elevated temperatures and the fracture mechanism was systematically revealed. The fatigue strength at 1... The high cycle fatigue(HCF) tests of modified 9 Cr-1 Mo dissimilarly welded joint were carried out at different elevated temperatures and the fracture mechanism was systematically revealed. The fatigue strength at 108 cycles based on S-N curve can be estimated as a half of weld joint's yield strength for all conducted temperatures, which can be a reliable criterion in predicting the fatigue life. The results show that the inter-critical heat affected zones(IC-HAZs) of both sides are the weak zones due to their low hardness and inferior fatigue resistance property. HAZ of COST-FB2(BM2) is the weakest zone at room temperature due to the existence of numerously distributed defects and the initiation of cracks, either in the surface or interior zone, impacting a crucial effect on the fatigue life of the joint. While at elevated temperatures, fatigue life was controlled mostly by the intrusion-extrusion mechanism at the specimen surface under high stress level and subsurface non-defect fatigue crack origin(SNDFCO) from the interior material under low stress amplitude. With increasing temperature, more and more fatigue failures began to occur at the HAZ of COST-E(BM1) due to its higher susceptibility of temperature. Besides, it is found that the-ferrite in the BM1 has no harm to the HCF behavior of the joint at the conducted temperatures. 展开更多
关键词 High cycle fatigue Dissimilarly welded joint Life time Fatigue failure fracture mode
原文传递
Computational Fracture Analysis of an AFM-Specimen under Mixed Mode Loading Conditions
10
作者 朱莉 李庆芬 F.G.Buchholz 《Journal of Marine Science and Application》 2011年第1期105-112,共8页
Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture beha... Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated. 展开更多
关键词 3-D crack fracture behavior stress intensity factors (SIFs) all fracture mode (AFM) specimen crack initiation angle mixed mode loading conditions
下载PDF
Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis
11
作者 Shao-Shi Rui Yi-Bo Shang +4 位作者 Wenhui Qiu Li-Sha Niu Hui-Ji Shi Shunsaku Matsumoto Yasuharu Chuman 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1582-1595,共14页
The fracture modes of low alloy steels and cast irons under tensile and fatigue conditions were identified by electron back-scattered diffraction(EBSD) misorientation analysis in this research. The curves of grain r... The fracture modes of low alloy steels and cast irons under tensile and fatigue conditions were identified by electron back-scattered diffraction(EBSD) misorientation analysis in this research. The curves of grain reference orientation deviation(GROD) distribution perpendicular to the fracture surface were obtained by EBSD observation, and the characteristics of each fracture mode were identified. The GROD value of the specimen fractured in tension decreases to a constant related to the elongation of corresponding specimen in the far field(farther than 5 mm away from the fracture surface). The peak exhibits in GROD curves of two smooth specimens and a notched specimen near the fracture surface(within 5 mm away from the fracture surface), and the formation mechanisms were discussed in detail based on the influences of specimen geometries(smooth or notched) and material toughness. The GROD value of fatigue fractured specimen is close to that at undeformed condition in the whole field, except the small area near the crack path. The loading conditions(constant stress amplitude loading or constant stress intensity factor range K loading) and the EBSD striation formation during fatigue crack propagation were also studied by EBSD observation parallel to the crack path. 展开更多
关键词 fracture mode identification Low alloy steels Cast irons Electron back-scattered diffraction (EBSD) Misorientation
原文传递
Dynamic ModeⅡfracture behavior of rocks under hydrostatic pressure using the short core in compression(SCC)method 被引量:6
12
作者 Wei Yao Ying XuChonglang Wang +1 位作者 Kaiwen Xia Mikko Hokka 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期927-937,共11页
The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitivel... The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures. 展开更多
关键词 Loading rate Finite element method modefracture toughness Fangshan marble Hydrostatic pressure Short core in compression
下载PDF
Mode II fracture analysis of double edge cracked circular disk subjected to different diametral compression 被引量:4
13
作者 陈枫 曹平 +1 位作者 饶秋华 徐纪成 《Journal of Central South University of Technology》 2004年第1期63-68,共6页
A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at cr... A detailed analysis of mode II stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode II SIFs at crack tips can be obtained by simply calculating an integral of the product of mode II weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode II SIF, f _Ⅱ, is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors previous work on mode I fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode I and mode II loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode II crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate. 展开更多
关键词 mode II fracture Brazilian disk ROCK weight function method diametral compression
下载PDF
Effect of specimen thickness on Mode Ⅱ fracture toughness of rock 被引量:5
14
作者 RAO Qiu hua 1,SUN Zong qi 1,WANG Gui yao 2,XU Ji cheng 3,ZHANG Jing yi 3 (1.College of Resources, Environment and Civil Engineering, Central South University, Changsha 410083, China 2.River and Sea Department, Changsha Communications Univer 《Journal of Central South University of Technology》 2001年第2期114-119,共6页
Anti symmetric four point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughne... Anti symmetric four point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughness of rock. Numerical calculations show that the occurrence of Mode Ⅱ fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode Ⅱ fracture toughness K ⅡC decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness. 展开更多
关键词 mode fracture toughness ROCK fracture stress analysis specimen thickness
下载PDF
MECHANISM ANALYSIS OF THICKNESS EFFECT ON MIXED MODE Ⅰ/Ⅱ FRACTURE OF LC4-CS ALUMINUM ALLOY 被引量:2
15
作者 H.R. Dong W.L. Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期255-262,共8页
Mixed mode Ⅰ/Ⅱ fracture erperiments of LC4-CS aluminum alloy were conductedby using tension--shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracturemechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture ... Mixed mode Ⅰ/Ⅱ fracture erperiments of LC4-CS aluminum alloy were conductedby using tension--shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracturemechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture were first examined fromfracture surface morphology to correlate with the macroscopic fracture behavior andstress state. It is found that specimen thickness has a strong influence on mixed modefracture. As thickness varies from thin to thick the macroscopic fracture surfacesappear the characteristics of plane stress state (2mm, 4mm--thick specimen), three--dimensional stress state (8mm--thick specimens), and plane strain state (14mm--thickspecimens), respectively. The specimens of all kinds of thicknesses are typical of ten-sile type failure under mode Ⅰ loading condition and shear type failure under mode Ⅱloading condition. Two distinct features coexist on the fracture surfaces under mixedmode loading conditions, and the corresponding proportion varies with loading mix-ity. Void--growth processes are the failure mechanism in both predominately tensile-and shears--type fractures. The size and depth of dimples on the fracture surface varygreatly with thickness. Therefore, it is extraordinary necessary to take into accountthe thickness effect when a mixed mode fracture criterion is being established. 展开更多
关键词 LC4-CS aluminum alloy mixed mode Ⅰ/Ⅱ fracture thickness effect macroscopic fracture appearance SEM
下载PDF
Prediction of mode I fracture toughness of rock using linear multiple regression and gene expression programming 被引量:1
16
作者 Bijan Afrasiabian Mosleh Eftekhari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1421-1432,共12页
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p... Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors. 展开更多
关键词 mode I fracture Toughness Critical stress intensity factor Linear multiple regression(LMR) Gene expression programming(GEP)
下载PDF
Mode Ⅲ fracture analysis by Trefftz boundary element method
17
作者 Yuhong Cui Juan Wang +1 位作者 Manicka Dhanasekar Qinghua Qin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期173-181,共9页
This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a... This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems. 展开更多
关键词 Hybrid Trefftz method. Galerkin technique .Point-collocation technique .mode III fracture
下载PDF
Experiment on Mode Ⅰ/Ⅱ Mixed Interfacial Fracture Characterization of Foam Core Sandwich Materials at Elevated Temperatures
18
作者 WANG Lu YIN Chunxiang SI Qinan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期83-87,共5页
Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ... Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized. 展开更多
关键词 foam core sandwich materials mode I/II mixed interfacial fracture elevated temperature single-leg bending strain energy release rate
下载PDF
Adiabatic shear fracture in Ti-6Al-4V alloy 被引量:7
19
作者 张静 谭成文 +4 位作者 任宇 于晓东 马红磊 王富耻 才鸿年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2396-2401,共6页
Separated specimens of Ti-6Al-4V alloy were dynamically loaded at a strain rate of 3 900 s-1 using a split Hopkinson pressure bar(SHPB) apparatus.The fracture features of the separated specimens were investigated by... Separated specimens of Ti-6Al-4V alloy were dynamically loaded at a strain rate of 3 900 s-1 using a split Hopkinson pressure bar(SHPB) apparatus.The fracture features of the separated specimens were investigated by a scanning electron microscope.The results show that adiabatic shear failure occurs in the tested specimens,and two typical areas(dimple and smooth areas) with different features are alternatively distributed on the whole fracture surface.The dimple areas originate from voids generation and coalescence,exhibiting ductile fracture characteristics.Simultaneously,ultrafine grains(UFGs) and microcracks among grains are observed on the smooth areas,indicating that the emergence of UFG areas is caused by the propagation of microcracks along grain boundaries and exhibits brittle fracture characteristics.Fracture occurring in adiabatic shear bands is not uniform and ultimate rupture is resulted from ductile and brittle fracture modes. 展开更多
关键词 TI-6AL-4V adiabatic shear dynamic fracture mode
下载PDF
Tensile and tear-type fracture toughness of gypsum material:Direct and indirect testing methods 被引量:1
20
作者 Daniel Pietras M.R.M.Aliha +1 位作者 Hadi G.Kucheki Tomasz Sadowski 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1777-1796,共20页
In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3P... In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable. 展开更多
关键词 GYPSUM Pure modesⅠandⅢfracture toughness Mixed modeⅠ/Ⅲ Circumferentially notched cylindrical torsion(CNCT)specimen Circumferentially notched cylindrical direct tension(CNCDT)specimen Edge notch disc bend(ENDB)specimen Experimental measurement Geometry and loading type effects
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部