Fracture propagation mechanisms in coalbed methane(CBM) reservoirs are very complex due to the development of the internal cleat system. In this paper, the characteristics of initiation and propagation of hydraulic fr...Fracture propagation mechanisms in coalbed methane(CBM) reservoirs are very complex due to the development of the internal cleat system. In this paper, the characteristics of initiation and propagation of hydraulic fractures in coal specimens at different angles between the face cleat and the maximum horizontal principal stress were investigated with hydraulic fracturing tests. The results indicate that the interactions between the hydraulic fractures and the cleat system have a major effect on fracture networks. "Step-like’’ fractures were formed in most experiments due to the existence of discontinuous butt cleats. The hydraulic fractures were more likely to divert or propagate along the butt cleat with an increase in the angles and a decrease in the horizontal principal stress difference. An increase in the injection rate and a decrease in the fracturing fluid viscosity were more conducive to fracture networks. In addition, the influence on fracture propagation of the residual coal fines in the wellbore was also studied. The existence of coal fines was an obstacle in fracturing, and no effective connection can be formed between fractures. The experimental investigation revealed the fracture propagation mechanisms and can provide guidance for hydraulic fracturing design of CBM reservoirs.展开更多
Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distributi...Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distribution of stimulated reservoir volume,the complex hydraulic fracture morphology was accurately described using heterogeneous node connection system.Then a new fracture connection element method(FCEM)for fluid flow in stimulated unconventional reservoirs with complex hydraulic fracture morphology was proposed.In the proposed FCEM,the arrangement of dense nodes in the stimulated area and sparse nodes in the unstimulated area ensures the calculation accuracy and efficiency.The key parameter,transmissibility,was also modified according to the strong heterogeneity of stimulated reservoirs.The finite difference and semi-analytical tracking were used to accurately solve the pressure and saturation distribution between nodes.The FCEM is validated by comparing with traditional numerical simulation method,and the results show that the bottom hole pressure simulated by the FCEM is consistent with the results from traditional numerical simulation method,and the matching rate is larger than 95%.The proposed FCEM was also used in the optimization of fracturing parameters by coupling the hydraulic fracture propagation method and intelligent optimization algorithm.The integrated intelligent optimization approach for multi-parameters,such as perforation number,perforation location,and displacement in hydraulic fracturing is proposed.The proposed approach was applied in a shale gas reservoir,and the result shows that the optimized perforation location and morphology distribution are related to the distribution of porosity/permeability.When the perforation location and displacement are optimized with the same fracture number,NPV increases by 70.58%,which greatly improves the economic benefits of unconventional reservoirs.This work provides a new way for flow simulation and optimization of hydraulic fracture morphology of multi-fractured horizontal wells in unconventional reservoirs.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA 840A electron probe.The results indicate that SiC particles in SiC...Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA 840A electron probe.The results indicate that SiC particles in SiCp/ZA27 composite are mainly distributed on interfaces or between dendrites and surrounded by primary α phase.The dendrite of α phase is fined by SiCp.The tensile strength at room temperature decreases with the increasing of SiCp addition.The tensile strength at elevated temperature increases with the addition of SiCp.The fracture of SiCp/ZA27 composites is the mixture of tough and brittle fracture.The carck is prone to extend along the interface and the region of dispersed shrinkage.展开更多
Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that co...Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir,展开更多
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi...Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.展开更多
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ...Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.展开更多
Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out ...Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out a series of triaxial compression tests on rock-like specimens with two crossed fractures under negative temperature, concluded the following conclusions. The strength and failure modes of rock mass are significantly influenced by the dips of two crossed fractures. The strength of rock mass with two frac- tures cannot simply be estimated using the method that was developed for the rock mass with a single fracture. When the intersecting angle is less than 30~, the failure plane initiates at the tip of "artificial rup- tures" and extends to the upper and lower ends of the specimen. In case of a higher dip and intersecting angle ranging from 30° to 60°, the failure plane propagates along one of these two fractures. The mechan- lca! parameters of rock mass are not only related to the trace length, but also depend on the trace !ength ratio. One could roughly calculate the strength parameters using the approximation proposed in.this paper..For the rock mass with a trace length ratio 〈0.3 (short trace length/long trace length), the failure mode is dependent on the fracture with a longer trace length. When the trace length becomes significant and the trace length ratio approximates to 1, the failure plane propagates along two fractures, where an X-shaped.failure pattern is presented: For the rock mass with moderate frac!ures and a trace length ratio of approxlmately 1, the failure mode Is.Independent on fractures, which is simllar to .the damage pattern of intact rock. The strength, and elastic .modulus of rock mass decrease with the increase of spacing between fractures, whl!e Polsson's ratio is Independent on the spacing. The failure mode can be deter- mined by the area. of triangle created by two fractures. Damage occurs at the smaller triangle area first, and propagates with the two sides of the larger triangle.展开更多
To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influ...To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influence factors are comprehensively explored,such as jet pressure,ambient pressure,etc.With the increasing jet pressure,the fracture morphology changes from parallel cracks to oblique cracks.Both the mass loss of specimen and CO_(2) absorption increase significantly,and the growth rate and minimum value of strain also rise exponentially.Under a high ambient pressure of 8.0 MPa,the main fractures mostly propagated from the surface to the bottom surface of the specimen.The maximum strain and the stable duration under higher ambient pressure are 1.5 times and 10 times,respectively,of the case under the ambient pressure of 5.0 MPa.The comparison shows that the optimal jet distance is 5-7 times the nozzle diameter,resulting in massive mass loss,large CO_(2)absorption,and peak strain.Moreover,the nonlinear variation of strain curve during jet pressurization is related to the type of rock and ambient pressure.These studies clearly show the relationship between the fracture morphology and induced strain,which are crucial for SC-CO_(2)fracturing in shale gas reservoirs.展开更多
The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also an...The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation(CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations; thus, to obtain full martensite, a higher cooling rate is needed; and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C.展开更多
The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated ...The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.展开更多
Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal charac...Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface.展开更多
The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of...The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of chemical element were observed with scanning electron microscope and energy dispersive spectrum,respectively.The experimental results show that the phenomenon of grain refinement occurs in the surface of welded joints in X70 steel pipeline after the laser shock processing,and compressive residual stress is formed in its surface strengthened layer.There is no yield stage but a continuous yield behavior in the welded joints in X70 steel pipeline after the laser shock processing,and its extensibility has decreased by 20%.The welded joints in X70 steel pipeline in primitive state exhibits brittle fracture with less tearing edges,while the fracture of welded joints in X70 steel pipeline processed by laser shock is ductile fracture with a lot of tearing edges.展开更多
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t...The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.展开更多
The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow prop...The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.展开更多
Microstructures of as-cast and extruded ZK60-xRE (RE=Dy, Ho and Gd, x=0-5, mass fraction) alloys were investigated. Meanwhile, the impact toughness was tested and then the relationship was discussed. The results sho...Microstructures of as-cast and extruded ZK60-xRE (RE=Dy, Ho and Gd, x=0-5, mass fraction) alloys were investigated. Meanwhile, the impact toughness was tested and then the relationship was discussed. The results show that as-cast microstructure is refined gradually with increasing the RE content. Mg-Zn-RE new phase increases gradually, while MgZn2 phase decreases gradually to disappear. Second phase tends to distribute along grain boundary in continuous network. Extruded microstructure is refined obviously to reach the micron level. Broken second phase tends to distribute along the extrusion direction in zonal shape. Impact toughness value -nK increases from 9-17 J/cm2 for as-cast state to 26-54 J/cm2 for extruded state. With increasing the value of -nK, fracture macro-morphology changes from a rough plane via multi-plane with step to V-type plane; and from single radiation zone to two zones of fiber and shear lip, respectively. Fracture micro-morphology changes from the brittle fracture to the ductile fracture. Fine grain and few fine dispersed second phase can enhance the impact toughness of magnesium alloys effectively.展开更多
Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure...Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.展开更多
To investigate the effects of thickness and grain size on mechanical and deformation properties of C5210 phosphor bronze thin sheets, samples with different grain sizes were obtained through annealing heat treatment a...To investigate the effects of thickness and grain size on mechanical and deformation properties of C5210 phosphor bronze thin sheets, samples with different grain sizes were obtained through annealing heat treatment at different temperatures; and then tensile tests of samples with different thicknesses and grain sizes were conducted at room temperature. The results show that yield strength increases with decreasing thickness from 800 to 50 μm, but work hardening exponent and total elongation decrease, and a modified model was proposed to describe the relation between yield strength and thickness; yield strength decreases as the grain size increases, but work hardening exponent shows an increasing trend, total elongation increases to a peak and then decreases. Fracture morphology of tensile specimens was observed by SEM, which indicates that all tensile specimens are ductile fracture. The dimple intensity increases as the specimen thickness increases but reduces with the specimen grain size increasing.展开更多
基金funded by the National Science and Technology Major Project of China (2016ZX05046004-003)Northeast Petroleum University Innovation Foundation for Postgraduate (YJSCX2017-010NEPU and YJSCX2017-009NEPU)
文摘Fracture propagation mechanisms in coalbed methane(CBM) reservoirs are very complex due to the development of the internal cleat system. In this paper, the characteristics of initiation and propagation of hydraulic fractures in coal specimens at different angles between the face cleat and the maximum horizontal principal stress were investigated with hydraulic fracturing tests. The results indicate that the interactions between the hydraulic fractures and the cleat system have a major effect on fracture networks. "Step-like’’ fractures were formed in most experiments due to the existence of discontinuous butt cleats. The hydraulic fractures were more likely to divert or propagate along the butt cleat with an increase in the angles and a decrease in the horizontal principal stress difference. An increase in the injection rate and a decrease in the fracturing fluid viscosity were more conducive to fracture networks. In addition, the influence on fracture propagation of the residual coal fines in the wellbore was also studied. The existence of coal fines was an obstacle in fracturing, and no effective connection can be formed between fractures. The experimental investigation revealed the fracture propagation mechanisms and can provide guidance for hydraulic fracturing design of CBM reservoirs.
基金supported the National Natural Science Foundation of China(No.52004033,51922007,and 51874044).
文摘Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distribution of stimulated reservoir volume,the complex hydraulic fracture morphology was accurately described using heterogeneous node connection system.Then a new fracture connection element method(FCEM)for fluid flow in stimulated unconventional reservoirs with complex hydraulic fracture morphology was proposed.In the proposed FCEM,the arrangement of dense nodes in the stimulated area and sparse nodes in the unstimulated area ensures the calculation accuracy and efficiency.The key parameter,transmissibility,was also modified according to the strong heterogeneity of stimulated reservoirs.The finite difference and semi-analytical tracking were used to accurately solve the pressure and saturation distribution between nodes.The FCEM is validated by comparing with traditional numerical simulation method,and the results show that the bottom hole pressure simulated by the FCEM is consistent with the results from traditional numerical simulation method,and the matching rate is larger than 95%.The proposed FCEM was also used in the optimization of fracturing parameters by coupling the hydraulic fracture propagation method and intelligent optimization algorithm.The integrated intelligent optimization approach for multi-parameters,such as perforation number,perforation location,and displacement in hydraulic fracturing is proposed.The proposed approach was applied in a shale gas reservoir,and the result shows that the optimized perforation location and morphology distribution are related to the distribution of porosity/permeability.When the perforation location and displacement are optimized with the same fracture number,NPV increases by 70.58%,which greatly improves the economic benefits of unconventional reservoirs.This work provides a new way for flow simulation and optimization of hydraulic fracture morphology of multi-fractured horizontal wells in unconventional reservoirs.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
文摘Solidification microstructure and mechanical property are explored.Furthermore,tensile fracture and microstructure are analyzed by using SEM and JXA 840A electron probe.The results indicate that SiC particles in SiCp/ZA27 composite are mainly distributed on interfaces or between dendrites and surrounded by primary α phase.The dendrite of α phase is fined by SiCp.The tensile strength at room temperature decreases with the increasing of SiCp addition.The tensile strength at elevated temperature increases with the addition of SiCp.The fracture of SiCp/ZA27 composites is the mixture of tough and brittle fracture.The carck is prone to extend along the interface and the region of dispersed shrinkage.
基金supported by the National Natural Science Foundation of China(grant No.41572140)the National Major Special Project of Science and Technology of China(grant No.2016ZX05044-001)+1 种基金the Fundamental Research Funds for the Central Universities(grant No.2015XKZD07)the Qing Lan Project
文摘Objective As the most widely used and effective technique in reservoir reconstruction of unconventional natural gas,hydraulic fracturing has been achieved good effect in CBM development.It is important to note that coal seam is both source rock and reservoir,
基金Project(50578038)supported by the National Natural Science Foundation of China
文摘Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
基金financially supported by the National Natural Science Foundation of China(No.51274142)the Science&Technology Project of Liaoning Province(No.2009221005)the Science&Technology Project of Shenyang City(Nos.F10-035-2-00 and F11-069-2-00)
文摘Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.
文摘Based on previous research results, this paper investigated the influence of fracture morphology on mechanical properties and failure modes of rock mass with two diagonal intersected fractures. This study carried out a series of triaxial compression tests on rock-like specimens with two crossed fractures under negative temperature, concluded the following conclusions. The strength and failure modes of rock mass are significantly influenced by the dips of two crossed fractures. The strength of rock mass with two frac- tures cannot simply be estimated using the method that was developed for the rock mass with a single fracture. When the intersecting angle is less than 30~, the failure plane initiates at the tip of "artificial rup- tures" and extends to the upper and lower ends of the specimen. In case of a higher dip and intersecting angle ranging from 30° to 60°, the failure plane propagates along one of these two fractures. The mechan- lca! parameters of rock mass are not only related to the trace length, but also depend on the trace !ength ratio. One could roughly calculate the strength parameters using the approximation proposed in.this paper..For the rock mass with a trace length ratio 〈0.3 (short trace length/long trace length), the failure mode is dependent on the fracture with a longer trace length. When the trace length becomes significant and the trace length ratio approximates to 1, the failure plane propagates along two fractures, where an X-shaped.failure pattern is presented: For the rock mass with moderate frac!ures and a trace length ratio of approxlmately 1, the failure mode Is.Independent on fractures, which is simllar to .the damage pattern of intact rock. The strength, and elastic .modulus of rock mass decrease with the increase of spacing between fractures, whl!e Polsson's ratio is Independent on the spacing. The failure mode can be deter- mined by the area. of triangle created by two fractures. Damage occurs at the smaller triangle area first, and propagates with the two sides of the larger triangle.
基金the National Natural Science Foundation of China(Grant No.52004236)Sichuan Science and Technology Program(Grant No.2021JDRC0114)+3 种基金the Starting Project of SWPU(Grant No.2019QHZ009)the China Postdoctoral Science Foundation(Grant No.2020M673285)the Open Project Program of Key Laboratory of Groundwater Resources and Environment(Jilin University),Ministry of Education(Grant No.202005009KF)the National Key Basic Research Program of China(Grant No.2014CB239203)for the financial support of this work。
文摘To investigate fracture generation and strain variation during SC-CO_(2)(supercritical carbon dioxide)jet fracturing,the model of induced strain is established and the experiments are comprehensively studied.The influence factors are comprehensively explored,such as jet pressure,ambient pressure,etc.With the increasing jet pressure,the fracture morphology changes from parallel cracks to oblique cracks.Both the mass loss of specimen and CO_(2) absorption increase significantly,and the growth rate and minimum value of strain also rise exponentially.Under a high ambient pressure of 8.0 MPa,the main fractures mostly propagated from the surface to the bottom surface of the specimen.The maximum strain and the stable duration under higher ambient pressure are 1.5 times and 10 times,respectively,of the case under the ambient pressure of 5.0 MPa.The comparison shows that the optimal jet distance is 5-7 times the nozzle diameter,resulting in massive mass loss,large CO_(2)absorption,and peak strain.Moreover,the nonlinear variation of strain curve during jet pressurization is related to the type of rock and ambient pressure.These studies clearly show the relationship between the fracture morphology and induced strain,which are crucial for SC-CO_(2)fracturing in shale gas reservoirs.
基金Project(51305317)supported by the National Natural Science Foundation of ChinaProjects(WUT:2013-IV-092,WUT:2014-VII-002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(IRT13087)supported by Innovative Research Team Development Program of Ministry of Education of China
文摘The fracture behaviour and morphologies of high-strength boron steel were investigated at different temperatures at a constant strain rate of 0.1 s-1 based on isothermal tensile tests. Fracture mechanisms were also analyzed based on the relationship between microstructure transformation and continuous cooling transformation(CCT) curves. It is found that 1) fractures of the investigated steel at high temperatures are dimple fractures; 2) the deformation of high-strength boron steel at high temperatures accelerates diffusion transformations; thus, to obtain full martensite, a higher cooling rate is needed; and 3) the investigated steel has the best plasticity when the deformation temperature is 750 °C.
文摘The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.
基金Project(NCET-10-0360) supported by the Program for New Century Excellent Talents in University,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface.
基金supported by the Natural Science Foundation of Jiangsu Province of China(BK2009104)
文摘The surface of welded joints in X70 steel pipeline was processed by laser shock wave, its mechanical behaviors of tension fracture were analyzed with tension test,and the fracture morphologies and the distributions of chemical element were observed with scanning electron microscope and energy dispersive spectrum,respectively.The experimental results show that the phenomenon of grain refinement occurs in the surface of welded joints in X70 steel pipeline after the laser shock processing,and compressive residual stress is formed in its surface strengthened layer.There is no yield stage but a continuous yield behavior in the welded joints in X70 steel pipeline after the laser shock processing,and its extensibility has decreased by 20%.The welded joints in X70 steel pipeline in primitive state exhibits brittle fracture with less tearing edges,while the fracture of welded joints in X70 steel pipeline processed by laser shock is ductile fracture with a lot of tearing edges.
基金funding support from the Natural Science Foundation of Sichuan,China(Grant No.2022NSFSC1227)the National Natural Science Foundation of China(Grant Nos.U1762216 and 51574270).
文摘The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs.
基金Project(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.
基金Projects(2010A090200078,2011A080403008)supported by the Major Science and TechnologyProject of Guangdong Province,China
文摘Microstructures of as-cast and extruded ZK60-xRE (RE=Dy, Ho and Gd, x=0-5, mass fraction) alloys were investigated. Meanwhile, the impact toughness was tested and then the relationship was discussed. The results show that as-cast microstructure is refined gradually with increasing the RE content. Mg-Zn-RE new phase increases gradually, while MgZn2 phase decreases gradually to disappear. Second phase tends to distribute along grain boundary in continuous network. Extruded microstructure is refined obviously to reach the micron level. Broken second phase tends to distribute along the extrusion direction in zonal shape. Impact toughness value -nK increases from 9-17 J/cm2 for as-cast state to 26-54 J/cm2 for extruded state. With increasing the value of -nK, fracture macro-morphology changes from a rough plane via multi-plane with step to V-type plane; and from single radiation zone to two zones of fiber and shear lip, respectively. Fracture micro-morphology changes from the brittle fracture to the ductile fracture. Fine grain and few fine dispersed second phase can enhance the impact toughness of magnesium alloys effectively.
基金Projects(2010A090200078,2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘Microstructures and phase compositions of as-cast and extruded ZK60-xGd (x=0-4) alloys were investigated. Meanwhile, the tensile mechanical property was tested. With increasing the Gd content, as-cast microstructure is refined gradually. Mg-Zn-Gd new phase increases gradually, while MgZn2 phase decreases gradually to disappear. The second phase tends to distribute along grain boundary by continuous network. As-cast tensile mechanical property is reduced slightly at ambient temperature when the Gd content does not exceed 2.98%. After extrusion by extrusion ratio of 40 and extrusion temperature of 593 K, microstructure is refined further with decreasing the average grain size to 2 μm for ZK60-2.98Gd alloy. Broken second phase distributes along the extrusion direction by zonal shape. Extruded tensile mechanical property is enhanced significantly. Tensile strength values at 298 and 473 K increase gradually from 355 and 120 MPa for ZK60 alloy to 380 and 164 MPa for ZK60-2.98Gd alloy, respectively. Extruded tensile fractures exhibit a typical character of ductile fracture.
文摘To investigate the effects of thickness and grain size on mechanical and deformation properties of C5210 phosphor bronze thin sheets, samples with different grain sizes were obtained through annealing heat treatment at different temperatures; and then tensile tests of samples with different thicknesses and grain sizes were conducted at room temperature. The results show that yield strength increases with decreasing thickness from 800 to 50 μm, but work hardening exponent and total elongation decrease, and a modified model was proposed to describe the relation between yield strength and thickness; yield strength decreases as the grain size increases, but work hardening exponent shows an increasing trend, total elongation increases to a peak and then decreases. Fracture morphology of tensile specimens was observed by SEM, which indicates that all tensile specimens are ductile fracture. The dimple intensity increases as the specimen thickness increases but reduces with the specimen grain size increasing.