Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables,...Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.展开更多
Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterat...Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .展开更多
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct...Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.展开更多
A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and ...A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.展开更多
Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optim...Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.展开更多
In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibratio...In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.展开更多
Considering the requirement of direct design and fatigue test for ships and floating structures by use of FEM technique, a computational procedure of spectral analysis for wave load on the hull surface is developed in...Considering the requirement of direct design and fatigue test for ships and floating structures by use of FEM technique, a computational procedure of spectral analysis for wave load on the hull surface is developed in this paper. The response of hydrodynamic pressure on the body surface to a designated sea state for ships and floating structures is calculated by use of the revised strip method with the hull bound perturbation flow concept. The spectral function of wave load for the defined point on the body surface can be determined from the Wiener-Khinhine theorem and the characteristic load value can be also obtained from spectral moment analysis. A container ship is taken as a computational example acid the sample of wave load with a certain probability and corresponding encountered frequency is provided.展开更多
The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitori...The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.展开更多
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present...Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.展开更多
A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the n...A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the noise. The filter bank is a finite impulse response (FIR) linear phase filter thus maintaining phase consistency. A modified Morlet base function is proposed to meet the time frequency resolution by using transient excitation. Numerical simulation is conducted using a Group for Aeronautical Research and Technology in Europe (GARTEUR) aircraft model excited by the transient input. The white noise is added to the simulated data. Results show that the accuracy of the system identification is improved. The estimated error of the mode damping is decreased by 30% compared with that obtained from the noise-corrupted signal.展开更多
Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple fre...Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.展开更多
The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF...The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF) into equal peaks. However, chatter is a special self-excited problem and a chatter-flee machining is determined by FRF at the cutting zone. A TMD tuning aiming at achieving the maximum chatter stability is studied, and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF. By employing the steepest descend method, the optimum frequency and damping ratio of TMD are obtained, and they are compared against the equal peaks tuning. The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part, and is further verified by damping a flexible mode from the fixture of a turning machine. A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization. Both of the above two ttmings are applied to modify the tool point FRF by tuning TMD respectively. Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks. Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit. The tool vibrations during the machining are compared to validate the simulation results. The proposed damping design and optimization routine are able to further increase the chatter suppression effect.展开更多
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based ...Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels.展开更多
An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and ...An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and place of damage in 3D spaces since it includes the most dynamic characteristics of the structures.Two-dimensional principal component analysis was utilized to reduce the size of the frequency response function data.The nearest neighbor search method was employed to detect the severity and location of damage in different damage scenarios.The accuracy of the approach was verified using measured data from an experimental test;moreover,two asymmetric 3D numerical examples were considered as the numerical study.The superiority of the method was demonstrated through comparison with the results of damage identification by using artificial neural network.Different levels of white Gaussian noise were used for polluting the frequency response function data to investigate the robustness of the methods against noise-polluted data.The results indicate that both methods can efficiently detect the damage properties including its severity and location with high accuracy in the absence of noise,but the nearest neighbor search method is more robust against noisy data than the artificial neural network.展开更多
A consequence of nonlinearities is a multi-harmonic response via a monoharmonic excitation.A similar phenomenon also exists in random vibration.The power spectral density(PSD)analysis of random vibration for nonlinear...A consequence of nonlinearities is a multi-harmonic response via a monoharmonic excitation.A similar phenomenon also exists in random vibration.The power spectral density(PSD)analysis of random vibration for nonlinear systems is studied in this paper.The analytical formulation of output PSD subject to the zero-mean Gaussian random load is deduced by using the Volterra series expansion and the conception of generalized frequency response function(GFRF).For a class of nonlinear systems,the growing exponential method is used to determine the first 3 rd-order GFRFs.The proposed approach is used to achieve the nonlinear system’s output PSD under a narrow-band stationary random input.The relationship between the peak of PSD and the parameters of the nonlinear system is discussed.By using the proposed method,the nonlinear characteristics of multi-band output via single-band input can be well predicted.The results reveal that changing nonlinear system parameters gives a one-of-a-kind change of the system’s output PSD.This paper provides a method for the research of random vibration prediction and control in real-world nonlinear systems.展开更多
In this paper, we show how Operating Deflection Shapes (ODS’s) andmode shapes can be obtained experimentally from measurements thatare made using only two sensors and two short wires to connect them to amulti-channel...In this paper, we show how Operating Deflection Shapes (ODS’s) andmode shapes can be obtained experimentally from measurements thatare made using only two sensors and two short wires to connect them to amulti-channel acquisition system. This new test procedure is depicted inFigure 1. Not only is the equipment required to do a test much more costeffective, but this method can be used to test any sized test article, especiallylarge ones.展开更多
A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displa...A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.展开更多
Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative...Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative dynamics results in the difference of cutting stage division and cutting parameter selection.This paper develops a novel method for whole cutting process optimization based on the relative varying dynamic characteristic of machining system.A new strategy to distinguish cutting stages depending on the dominated dynamics during machining process is proposed,and a thickness-dependent model to predict the dynamics of part is developed.Optimal cutting parameters change with stages,which can be divided by the critical thickness of part.Based on the dynamics comparison between machine tool and thickness-varying part,the critical thicknesses are predicted by an iterative algorithm.The proposed method is validated by the machining of three benchmarks.Good agreements have been obtained between prediction and experimental results in terms of stages identification,meanwhile,the optimized parameters perform well during the whole cutting process.展开更多
The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Th...The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Then using principal component analysis (PCA),the variable space dimensions of damage identification matrix can be reduced,and original data characters of FRFs can be analyzed and extracted from lower dimension variable space. Thus truss damages can be identified using the multivariate control chart of first several order principal components which contain almost all of original data information. Without the need for modal parameters,the method avoids the errors of modal fitting. In order to validate the reliability of the method,a whole size truss was tested with six types of damage case concerning single or two element damages. The experimental result shows that the proposed method is straightforward and reliable for truss damage identification. Especially,the method has good applicability for the truss under noisy environment and non-linear cases.展开更多
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金Ministry of Construction of China through the Science and Technique Program Grant No.06-k6-13Guangzhou Construction Technological Development Foundation through Grant No.200409+1 种基金Guangdong Province Natural Science Foundation through Grant No.5300381 Guangzhou Science and Technique Bureau through Science and Technique Program Grant No.2006J1-C0451
文摘Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.
基金supported by the Key Project of the National Natural Science Foundation of China (11132007)
文摘Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .
基金Supported by National Natural Science Foundation of China under Grant No.50379025.
文摘Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
文摘A suspicion of a femoral neck fracture is a frequently recurring situation, especially in nursing homes. For the clarification of such a suspicion normally imaging techniques are used. Such equipment is expensive and therefore is located in hospitals. In addition to the costs, a transport causes stress for the patient. This pilot study is devoted to the question whether the detection of a femoral neck fracture with vibration measurements is possible in principal. In such a case, the clarification could be done on-site by an ordinary person using much cheaper equipment. This would reduce the stress for the patient and save money. For this purpose vibration measurements on a dead body with intact, with partially fractured and with complete cut femoral neck have been performed. Two different methods for the vibration initiation have been investigated, the so called impact testing and the shaker testing. The frequency response function has been determined for all combinations on both sides of the body. It turned out that there is a clear difference in the frequency response functions of the fractured bone with respect to the intact bone when shaker testing is used. This indicates that the method could have the potential to be a cost-saving alternative to imaging techniques. However, in a next step a statistically reliable clinical survey on living persons needs to be done.
基金supported by the National Natural Science Foundation of China(Grant No.52175463)Key R&D plan of Hubei Province(Grant No.2022BAA055)State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2022KF008)。
文摘Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.
基金the National Natural Science Foundation of China(Project Nos.12022213,11772205 and 11902203)the Scieatifie Research Fund of Liaoning Provineinl Education Department(No.L201703)+1 种基金the Program of Liaoning Revitalization Talents(XLYC1807172)the Tralning Project of Liaoning Higher Education Institutions in Domestic and Oveseas(Nos.2018LNGXGJWPY-YB008).
文摘In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.
文摘Considering the requirement of direct design and fatigue test for ships and floating structures by use of FEM technique, a computational procedure of spectral analysis for wave load on the hull surface is developed in this paper. The response of hydrodynamic pressure on the body surface to a designated sea state for ships and floating structures is calculated by use of the revised strip method with the hull bound perturbation flow concept. The spectral function of wave load for the defined point on the body surface can be determined from the Wiener-Khinhine theorem and the characteristic load value can be also obtained from spectral moment analysis. A container ship is taken as a computational example acid the sample of wave load with a certain probability and corresponding encountered frequency is provided.
基金Financial Support by the Pars Oil and Gas Company(Grant No. 88-065)
文摘The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.
基金supported by the National Science Fund for Distinguished Young Scholars (11125209)the National Natural Science Foundation of China (10902068,51121063 and 10702039)+1 种基金the Shanghai Pujiang Program (10PJ1406000)the Opening Project of State Key Laboratory of Mechanical System and Vibration (MSV201103)
文摘Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
文摘A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the noise. The filter bank is a finite impulse response (FIR) linear phase filter thus maintaining phase consistency. A modified Morlet base function is proposed to meet the time frequency resolution by using transient excitation. Numerical simulation is conducted using a Group for Aeronautical Research and Technology in Europe (GARTEUR) aircraft model excited by the transient input. The white noise is added to the simulated data. Results show that the accuracy of the system identification is improved. The estimated error of the mode damping is decreased by 30% compared with that obtained from the noise-corrupted signal.
基金Program for New Century Excellent Talents in Universities Under Grant No.NCET-04-0325
文摘Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.
基金supported by National Technology Support Program of China (Grant No. 2006BAF01B09)Doctoral Foundation of Ministry of Education of China (Grant No. 200800060010)+1 种基金Beijing Municipal Key Laboratory Project of Chinasupport from the Manufacturing Automation Laboratory(MAL) of the University of British Columbia
文摘The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF) into equal peaks. However, chatter is a special self-excited problem and a chatter-flee machining is determined by FRF at the cutting zone. A TMD tuning aiming at achieving the maximum chatter stability is studied, and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF. By employing the steepest descend method, the optimum frequency and damping ratio of TMD are obtained, and they are compared against the equal peaks tuning. The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part, and is further verified by damping a flexible mode from the fixture of a turning machine. A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization. Both of the above two ttmings are applied to modify the tool point FRF by tuning TMD respectively. Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks. Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit. The tool vibrations during the machining are compared to validate the simulation results. The proposed damping design and optimization routine are able to further increase the chatter suppression effect.
基金National Natural Science Foundation of China under Grant No.51678499。
文摘Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the ground into nearby buildings.Various studies,mainly based on numerical methods as well as physical modelling,have been carried out to investigate this problem.To study the dynamic response of tunnels and the surrounding soil due to train-induced vibration loads,a centrifuge test was conducted with a small-scale model in 1 g and 50 g stress field environments.An aluminum tube was embedded in sand to model the underground tunnel.A small parallel pre-stressed actuator(PPA)was employed to apply vibration loads on the tunnel invert.The model responses were measured using accelerometers.Both time and frequency domain analyzes were performed.The test results demonstrated that electronic noise had a clear impact on the test results and should be eliminated.It also found that the dynamic response of both the tunnel and soil were affected by the stress field.Therefore,it is important to account for the stress field effects when assessing the ground-borne vibration from tunnels.
文摘An innovative damage identification method using the nearest neighbor search method to assess 3D structures is presented.The frequency response function was employed as the input parameters to detect the severity and place of damage in 3D spaces since it includes the most dynamic characteristics of the structures.Two-dimensional principal component analysis was utilized to reduce the size of the frequency response function data.The nearest neighbor search method was employed to detect the severity and location of damage in different damage scenarios.The accuracy of the approach was verified using measured data from an experimental test;moreover,two asymmetric 3D numerical examples were considered as the numerical study.The superiority of the method was demonstrated through comparison with the results of damage identification by using artificial neural network.Different levels of white Gaussian noise were used for polluting the frequency response function data to investigate the robustness of the methods against noise-polluted data.The results indicate that both methods can efficiently detect the damage properties including its severity and location with high accuracy in the absence of noise,but the nearest neighbor search method is more robust against noisy data than the artificial neural network.
基金the National Natural Science Foundation of China(Nos.11772084 and U1906233)the National High Technology Research and Development Program of China(No.2017YFC0307203)the Key Technology Research and Development Program of Shandong Province of China(No.2019JZZY010801)。
文摘A consequence of nonlinearities is a multi-harmonic response via a monoharmonic excitation.A similar phenomenon also exists in random vibration.The power spectral density(PSD)analysis of random vibration for nonlinear systems is studied in this paper.The analytical formulation of output PSD subject to the zero-mean Gaussian random load is deduced by using the Volterra series expansion and the conception of generalized frequency response function(GFRF).For a class of nonlinear systems,the growing exponential method is used to determine the first 3 rd-order GFRFs.The proposed approach is used to achieve the nonlinear system’s output PSD under a narrow-band stationary random input.The relationship between the peak of PSD and the parameters of the nonlinear system is discussed.By using the proposed method,the nonlinear characteristics of multi-band output via single-band input can be well predicted.The results reveal that changing nonlinear system parameters gives a one-of-a-kind change of the system’s output PSD.This paper provides a method for the research of random vibration prediction and control in real-world nonlinear systems.
文摘In this paper, we show how Operating Deflection Shapes (ODS’s) andmode shapes can be obtained experimentally from measurements thatare made using only two sensors and two short wires to connect them to amulti-channel acquisition system. This new test procedure is depicted inFigure 1. Not only is the equipment required to do a test much more costeffective, but this method can be used to test any sized test article, especiallylarge ones.
基金Project(2013CB632305)supported by the National Basic Research Program of ChinaProject(51375108)supported by the National Natural Science Foundation of China
文摘A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.
基金National Key R&D Program of China(Grant No.2018YFB1701901)Guangdong Provincial Key-Area Research and Development Program(Grant No.2020B090927002).
文摘Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative dynamics results in the difference of cutting stage division and cutting parameter selection.This paper develops a novel method for whole cutting process optimization based on the relative varying dynamic characteristic of machining system.A new strategy to distinguish cutting stages depending on the dominated dynamics during machining process is proposed,and a thickness-dependent model to predict the dynamics of part is developed.Optimal cutting parameters change with stages,which can be divided by the critical thickness of part.Based on the dynamics comparison between machine tool and thickness-varying part,the critical thicknesses are predicted by an iterative algorithm.The proposed method is validated by the machining of three benchmarks.Good agreements have been obtained between prediction and experimental results in terms of stages identification,meanwhile,the optimized parameters perform well during the whole cutting process.
基金the Foundation of Henan Province Key Technology R and D Program(Grant No.0423033700).
文摘The present paper addresses the subject of truss damage identification using measured frequency response functions (FRF). Damage identification matrix is formed using measured FRFs obtained from truss dynamic test. Then using principal component analysis (PCA),the variable space dimensions of damage identification matrix can be reduced,and original data characters of FRFs can be analyzed and extracted from lower dimension variable space. Thus truss damages can be identified using the multivariate control chart of first several order principal components which contain almost all of original data information. Without the need for modal parameters,the method avoids the errors of modal fitting. In order to validate the reliability of the method,a whole size truss was tested with six types of damage case concerning single or two element damages. The experimental result shows that the proposed method is straightforward and reliable for truss damage identification. Especially,the method has good applicability for the truss under noisy environment and non-linear cases.