The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were pr...The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation.The water droplet size in the emulsion,polydisperisty index,and the stability of prepared fuel was examined,experimentally.Afterwards,the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels.The effect of water content(in the range of 5%-10% by volume),surfactant content(in the range of 0.5%-2% by volume),and hydrophilic-lipophilic balance(HLB)(in the range of 5-8)was examined using Box-Behnken design(BBD)as a subset of response surface methodology(RSM).Considering multi-objective optimization,the best formulation for the emulsion fuel was found to be 5%water,2% surfactant,and HLB of 6.8.A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics.A considerable decrease in the nitrogen oxide emission(-18.24%)was observed for the best emulsion fuel compared to neat diesel fuel.展开更多
This paper aims to develop a new microemul- sions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel mi...This paper aims to develop a new microemul- sions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel micro- emulsions were prepared by applying PME mixed with diesel, non-ionic surfactants, co-surfaetants and water to make the water-in-oil (W/O) microemulsion system. This microemulsified fuel was achieved through low-energy microemulsification by using the constant composition method. The diesel used was mixed with four different concentrations of PME, i.e., 10% (w/w) (B10), 20% (w/w) (B20), 30% (w/w) (B30) and neat diesel (B0). The amount of water was fixed at 20% (w/w). The phase behavior of the water/mixed non-ionic surfactant/diesel-PME system were studied by constructing pseudoternary phase diagrams with the goal of formulating optimized systems. The results showed that the microemulsions were formed and stabilized with a mixture of non-ionic surfactants at a weight ratio of 80:20 at 20% (w/w), and with mixed co-surfactants at a weight ratio of 25:75, 20:80 and 10:90 for B0, B10, B20 and B30 respectively. The particle size, kinematic viscosity at 40℃, refractive index, density, heating value, cloud point, pour pointand flash point of the selected water-in-diesel microemulsion were 19.40 nm (polydispersity of 0.012), 12.86mm^2/s, 1.435, 0.8913g/mL, 31.87MJ/kg, 7.15℃, 10.5℃ and 46.5℃ respectively. The corresponding values of the water-in-diesel@ME selected were 20.72nm to 23.74nm, 13.02mme/s to 13.29mmZ/s, 1.442, 0.8939g/mL to 0.8990g/mL, 31.45MJ/kg to 27.34 MJ/kg, 7.2℃ to 6.8℃, 8.5℃ to 1.5℃ and 47.5℃ to 52.0℃. These preliminary findings were further studied as potential fuels for diesel engines.展开更多
文摘The nitrogen oxide(NOx)release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification.In the present paper,different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation.The water droplet size in the emulsion,polydisperisty index,and the stability of prepared fuel was examined,experimentally.Afterwards,the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels.The effect of water content(in the range of 5%-10% by volume),surfactant content(in the range of 0.5%-2% by volume),and hydrophilic-lipophilic balance(HLB)(in the range of 5-8)was examined using Box-Behnken design(BBD)as a subset of response surface methodology(RSM).Considering multi-objective optimization,the best formulation for the emulsion fuel was found to be 5%water,2% surfactant,and HLB of 6.8.A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics.A considerable decrease in the nitrogen oxide emission(-18.24%)was observed for the best emulsion fuel compared to neat diesel fuel.
文摘This paper aims to develop a new microemul- sions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel micro- emulsions were prepared by applying PME mixed with diesel, non-ionic surfactants, co-surfaetants and water to make the water-in-oil (W/O) microemulsion system. This microemulsified fuel was achieved through low-energy microemulsification by using the constant composition method. The diesel used was mixed with four different concentrations of PME, i.e., 10% (w/w) (B10), 20% (w/w) (B20), 30% (w/w) (B30) and neat diesel (B0). The amount of water was fixed at 20% (w/w). The phase behavior of the water/mixed non-ionic surfactant/diesel-PME system were studied by constructing pseudoternary phase diagrams with the goal of formulating optimized systems. The results showed that the microemulsions were formed and stabilized with a mixture of non-ionic surfactants at a weight ratio of 80:20 at 20% (w/w), and with mixed co-surfactants at a weight ratio of 25:75, 20:80 and 10:90 for B0, B10, B20 and B30 respectively. The particle size, kinematic viscosity at 40℃, refractive index, density, heating value, cloud point, pour pointand flash point of the selected water-in-diesel microemulsion were 19.40 nm (polydispersity of 0.012), 12.86mm^2/s, 1.435, 0.8913g/mL, 31.87MJ/kg, 7.15℃, 10.5℃ and 46.5℃ respectively. The corresponding values of the water-in-diesel@ME selected were 20.72nm to 23.74nm, 13.02mme/s to 13.29mmZ/s, 1.442, 0.8939g/mL to 0.8990g/mL, 31.45MJ/kg to 27.34 MJ/kg, 7.2℃ to 6.8℃, 8.5℃ to 1.5℃ and 47.5℃ to 52.0℃. These preliminary findings were further studied as potential fuels for diesel engines.