Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform...In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.展开更多
Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In thi...Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.展开更多
A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment n...A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment nutrient criterion. This study examined the effect of these combined processes on the fate and transport of the nitrogen species during the treatment process. The effectiveness of nitrogen removal within the full scale sequential batch reactor system (SBR) and the extent of SND compared to nitrification and denitrification in the nitrogen removal process was also evaluated. Finally, the overall performance of the municipal wastewater treatment facility utilizing these combined processes was evaluated. Overall, this application reduced the total nitrogen to almost 6% of the permitted concentration of 3.0 mg/L. The combination of both processes also resulted in an actual ?concentration 93.7% lower than the acceptable theoretical ?concentration, which also resulted in effluent Total Inorganic Nitrogen nearly 80% lower than the permitted 3.0 mg/L effluent concentration. Further, the process produced a composite Total Nitrogen concentration that was 74% lower than the permitted concentration. This coupling of SND with traditional nitrogen removal resulted in a highly effective process to reduce nitrogen in the municipal wastewater effluent which is also attractive for potential implementation due to the low cost expenditure incurred in its utilization.展开更多
Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The...Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.展开更多
A joint industry project on a full scale measurement of Fenjin FPSO,headed by Shanghai Jiao Tong University and sponsored by CNOOC,was initiated in October 2007 and has been going on for more than 25 months.The purpos...A joint industry project on a full scale measurement of Fenjin FPSO,headed by Shanghai Jiao Tong University and sponsored by CNOOC,was initiated in October 2007 and has been going on for more than 25 months.The purpose of the project is to measure and collect the motions in six-degrees of freedom of an FPSO,and to collect the environmental loads at the offshore oil-field.A motion data measuring system is designed and installed on the FPSO.Another environmental data measuring system is installed on a fixed jacket platform nearby.A large quantity of valuable first-hand data is obtained.With the data collected,motion characteristics of the FPSO in a long-term period are concluded.A short-term analysis for the FPSO in one of the typhoons is also completed.The mean periods of wave-frequency motions are calculated by the spectrum analysis.The tension loads of the mooring system,which is of great concern,are calculated by the decoupled technique.展开更多
The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a ...The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a 300 m^(3)/d hybrid biofilm reactor(HBR)process was developed and operated with a short hydraulic retention time(HRT)of 8 h.The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process.The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33%at Day 130 and then to 2.89%at Day 213.Based upon the activity of anammox bacteria,the removal of ammonia nitrogen(NH_(4)^(+)-N)in the anoxic zone was approximately 15%.This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone.The final effluent contained 12 mg/L chemical oxygen demand(COD),0.662 mg/L NH_(4)^(+)-N,7.2 mg/L total nitrogen(TN),and 6 mg/L SS,indicating the effectiveness of the HBR process for treating real domestic wastewater.展开更多
By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine struc...By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.展开更多
Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipme...Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.展开更多
Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancin...Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well.展开更多
In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actu...In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.展开更多
Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. Howe...Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. However,there are many problems to be solved in practical application. Firstly,it is the strong nonlinear problem between the seismic wave field and inversion parameters; secondly,the lack of low-frequency information in seismic records. In this study,the envelope is used as objective function inversion to provide the inversion result for the multi-scale full waveform inversion as the initial model,solving the lack of low-frequency information in seismic records. Taking the envelope of seismic records as the objective function in combination of multi-scale full waveform inversion became a new inversion strategy,which naturally achieved the compensation of shortage of low-frequency information and inversion from low frequency to high frequency,reducing the non-linearity in the inversion process. The comparison of the result of full waveform inversion of the initial model built through envelope inversion with the result of the conventional multi-scale full waveform inversion indicates the effectiveness of envelope inversion for the recovery of low-frequency information in seismic records.展开更多
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50508012)
文摘In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.
基金Supported by Nature Science Foundation of Heilongjiang Province ( No. E200510) and Education Affliction Program of HeilongjiangProvince (No.10551093)
文摘Mesocyclops Leukarti of zooplankton propagates excessively in eutrophic water body and it can not be effectively inactivated by the conventional process in drinking waterworks for its special surface structure. In this paper, a study of removal efficiency on Mesocyclops Leukarti with chlorine dioxide in a drinking waterworks was performed. Bench scale results showed that chlorine dioxide is more effective against Mesocyclops Leukarti. And Mesocyclops Leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide preoxidation cooperated with the conventional process during the full scale study. The chlorite, by.product of prechiorine dioxide, was constant at 0.45 mg/L after filtration, which was lower than the critical value of the USEPA. GC-MS examination and Ames test showed that the quantity of organics and the mutngenicity in the water treated by chlorine dioxide is obviously less than that of prechlorination.
文摘A Florida wastewater treatment facility studied how Simultaneous Nitrification Denitrification (SND) coupled with traditional nitrogen removal would be used to meet the state’s current advanced wastewater treatment nutrient criterion. This study examined the effect of these combined processes on the fate and transport of the nitrogen species during the treatment process. The effectiveness of nitrogen removal within the full scale sequential batch reactor system (SBR) and the extent of SND compared to nitrification and denitrification in the nitrogen removal process was also evaluated. Finally, the overall performance of the municipal wastewater treatment facility utilizing these combined processes was evaluated. Overall, this application reduced the total nitrogen to almost 6% of the permitted concentration of 3.0 mg/L. The combination of both processes also resulted in an actual ?concentration 93.7% lower than the acceptable theoretical ?concentration, which also resulted in effluent Total Inorganic Nitrogen nearly 80% lower than the permitted 3.0 mg/L effluent concentration. Further, the process produced a composite Total Nitrogen concentration that was 74% lower than the permitted concentration. This coupling of SND with traditional nitrogen removal resulted in a highly effective process to reduce nitrogen in the municipal wastewater effluent which is also attractive for potential implementation due to the low cost expenditure incurred in its utilization.
文摘Long-span bridges are special structures that require advanced analysis techniques to examine their performance. This paper presents a procedure developed to model the Confederation Bridge using 3-D beam elements. The model was validated using the data collected before the opening of the bridge to the public. The bridge was instrumented to conduct fullscale static and dynamic tests. The static tests were to measure the deflection of the bridge pier while the dynamic tests to measure the free vibrations of the pier due to a sudden release of the static load. Confederation Bridge is one of the longest reinforced concrete bridges in the world. It connects the province of Prince Edward Island and the province of New Brunswick in Canada. Due to its strategic location and vital role as a transportation link between these two provinces, it was designed using higher safety factors than those for typical highway bridges. After validating the present numerical model, a procedure was developed to evaluate the performance of similar bridges subjected to traffic and seismic loads. It is of interest to note that the foundation stiffness and the modulus of elasticity of the concrete have significant effects on the structural responses of the Confederation Bridge.
基金supported by the National Scientific and Technology Major Project (Grant No.2008ZX05026-006)
文摘A joint industry project on a full scale measurement of Fenjin FPSO,headed by Shanghai Jiao Tong University and sponsored by CNOOC,was initiated in October 2007 and has been going on for more than 25 months.The purpose of the project is to measure and collect the motions in six-degrees of freedom of an FPSO,and to collect the environmental loads at the offshore oil-field.A motion data measuring system is designed and installed on the FPSO.Another environmental data measuring system is installed on a fixed jacket platform nearby.A large quantity of valuable first-hand data is obtained.With the data collected,motion characteristics of the FPSO in a long-term period are concluded.A short-term analysis for the FPSO in one of the typhoons is also completed.The mean periods of wave-frequency motions are calculated by the spectrum analysis.The tension loads of the mooring system,which is of great concern,are calculated by the decoupled technique.
基金supported by The Major Science and Technology Program for Water Pollution Control and Treatment(Ministry of Ecology and Environment,China)(No.2017ZX07103-003)and seed fund for Beijing Young Engineering,China.
文摘The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a 300 m^(3)/d hybrid biofilm reactor(HBR)process was developed and operated with a short hydraulic retention time(HRT)of 8 h.The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process.The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33%at Day 130 and then to 2.89%at Day 213.Based upon the activity of anammox bacteria,the removal of ammonia nitrogen(NH_(4)^(+)-N)in the anoxic zone was approximately 15%.This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone.The final effluent contained 12 mg/L chemical oxygen demand(COD),0.662 mg/L NH_(4)^(+)-N,7.2 mg/L total nitrogen(TN),and 6 mg/L SS,indicating the effectiveness of the HBR process for treating real domestic wastewater.
基金financially supported by the National Natural Science Foundation of China(Grant No.15572072)the National Key Basic Research and Development Program(Grant Nos.2014CB046803 and 2016ZX05028-002-005)
文摘By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.
文摘Hydrogen sulfide(H_(2)S)is a critical component of biogas formed under anaerobic conditions by sulfur and sulfate reducing bacteria from animal manure and renewable energy crops.H_(2)S causes high corrosion in equipment,has a negative environmental impact,inhibits the biogas formation process and is furthermore odorous and toxic.Although several methods for internal and external desulfurization found their way into practice and had been explored at laboratory scale,no data were available on the performance of such methods in full scale practice,especially for an external fixed-bed trickling bioreactor(FBTB).The effects of temperature,pH and air ratio on H_(2)S removal efficiency(RE)were studied.The study was conducted at a research biogas plant with a given output of 96 m^(3) biogas per hour,and an H_(2)S concentration ranging between 500 ppm and 600 ppm(1 ppm=1 cm^(3)/m^(3))on average.The FBTB column has been designed to hold a packing volume of 2.21 m^(3) at a gas retention time of 84 seconds being loaded at an average of 32.88 g H_(2)S/(m^(3)·h).The highest H_(2)S RE of 98% was found at temperatures between 30℃ and 40℃.A major decline in RE to 21%-45%was observed at temperatures from 5℃ to 25℃.The results clearly showed a temperature optimum range for sulfate reducing bacteria.The results reveal that RE is little affected by different pH values and air ratios.During the experimental period,the practical suitability of the FBTB system could be proved while avoiding the disadvantages of internal biological desulfurization methods.
基金Science and Technology Authority of Taiwan under Grant No.107-2221-E-492-004-
文摘Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well.
基金Funded by the National Natural Science Foundation of China(Nos.11172053 and 91016024)the New Century Excellent Talents in University(NCET-11-0055)the Fundamental Research Funds for the Central Universities(DUT13ZD(G)06)
文摘In-service structural health monitoring(SHM) technologies are critical for the utilization of composite aircraft structures. We developed a Lamb wave-based in-service SHM technology using built-in piezoelectric actuator/sensor networks to monitor delamination extension in a full-scale composite horizontal tail. The in-service SHM technology combine of damage rapid monitoring(DRM) stage and damage imaging diagnosis(DID) stage allows for real-time monitoring and long term tracking of the structural integrity of composite aircraft structures. DRM stage using spearman rank correlation coeffi cient was introduced to generate a damage index which can be used to monitor the trend of damage extension. The DID stage based on canonical correlation analysis aimed at intuitively highlighting structural damage regions in two-dimensional images. The DRM and DID stages were trialed by an in-service SHM experiment of CFRP T-joint. Finally, the detection capability of the in-service SHM technology was verified in the SHM experiment of a full-scale composite horizontal tail. Experimental results show that the rapid monitoring method effectively monitors the damage occurrence and extension tendency in real time; damage imaging diagnosis results are consistent with those from the failure model of the composite horizontal tail structure.
基金Supported by Project of National Natural Science Foundation of China(No.41274120)
文摘Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. However,there are many problems to be solved in practical application. Firstly,it is the strong nonlinear problem between the seismic wave field and inversion parameters; secondly,the lack of low-frequency information in seismic records. In this study,the envelope is used as objective function inversion to provide the inversion result for the multi-scale full waveform inversion as the initial model,solving the lack of low-frequency information in seismic records. Taking the envelope of seismic records as the objective function in combination of multi-scale full waveform inversion became a new inversion strategy,which naturally achieved the compensation of shortage of low-frequency information and inversion from low frequency to high frequency,reducing the non-linearity in the inversion process. The comparison of the result of full waveform inversion of the initial model built through envelope inversion with the result of the conventional multi-scale full waveform inversion indicates the effectiveness of envelope inversion for the recovery of low-frequency information in seismic records.