In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection method...Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.展开更多
An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse o...An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.展开更多
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi...In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillation...This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillations caused by dynamic disturbances. At first, we used the Lyapunov method to study the dynamic stability of the power grid in the Republic of Congo. This method allowed us to analyze the eigenvalues of the state variable matrix and highlight the eigenvalues in the complex plane. Secondly, we proposed a fuzzy logic-based controller to account for uncertainties existing near the thresholds. The inputs to this controller are the generator speed and generator rotor angle. We demonstrated the effectiveness and feasibility of this fuzzy control by applying it to the power grid of the Republic of Congo, with three power stabilizers and two STATCOMs. .展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ...In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).展开更多
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol...In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.展开更多
Although there are many different types of philosophy, many philosophers agree that the mainstream of Western philosophy (Socrates, Plato, Aristotle, Descartes, Kant, Wittgenstein) developed toward the perfection of S...Although there are many different types of philosophy, many philosophers agree that the mainstream of Western philosophy (Socrates, Plato, Aristotle, Descartes, Kant, Wittgenstein) developed toward the perfection of Socrates’ absolutism. But can the absolutism maintain its central position after analytic philosophy? There are pessimistic views on this problem, such as that of R. Rorty, the standard-bearer of neo-pragmatism. Recently, I proposed quantum language (which is including quantum mechanics, statistics, fuzzy sets, etc.). I think that that this theory is not only one of the most fundamental scientific theories, but also the scientific final destination of Western philosophy. If so, Socrates’ dream has come true. The purpose of this paper is to discuss the above and to inform readers that quantum language has the power to create a paradigm shift from the classical mechanical world view to the quantum mechanical worldview.展开更多
In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mob...In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.展开更多
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N...This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.展开更多
A new real-time map matching algorithm based on fuzzy logic is proposed. 3 main factors affecting the reliability of map matching, including the distance between the vehicle location and the matching road segment, the...A new real-time map matching algorithm based on fuzzy logic is proposed. 3 main factors affecting the reliability of map matching, including the distance between the vehicle location and the matching road segment, the angle between the vehicle direction and the road segment direction and the road connectivity are discussed. Fuzzy rules for the distance, angle and connectivity are presented to calculate the matching reliability. 2 indicators for estimating the matching reliability are then derived, one is the lower limit of the reliability, and the other is the limit error of the difference between the maximal value and the second-maximal value of the reliability. A real-time map-matching system based on fuzzy logic is therefore developed. Using the real data of global positioning system(GIS) based navigation and geographic information system(GPS) based road map, the method is verified and the (results) prove the effectiveness of the proposed method.展开更多
Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage ...Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.展开更多
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T...As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.展开更多
To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptiv...To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.展开更多
The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and...The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.展开更多
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.
基金National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金funded by the National Natural Science Foundation of China:Research on the Energy Management Strategy of Li-Ion Battery and Sc Hybrid Energy Storage System for Electric Vehicle(51677058).
文摘In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
文摘This article presents a fuzzy logic-based approach to coordinate the control devices of the power system, such as Power System Stabilizers (PSS) and Static Synchronous Compensators (STATCOM), to damp power oscillations caused by dynamic disturbances. At first, we used the Lyapunov method to study the dynamic stability of the power grid in the Republic of Congo. This method allowed us to analyze the eigenvalues of the state variable matrix and highlight the eigenvalues in the complex plane. Secondly, we proposed a fuzzy logic-based controller to account for uncertainties existing near the thresholds. The inputs to this controller are the generator speed and generator rotor angle. We demonstrated the effectiveness and feasibility of this fuzzy control by applying it to the power grid of the Republic of Congo, with three power stabilizers and two STATCOMs. .
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
文摘In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R).
文摘In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.
文摘Although there are many different types of philosophy, many philosophers agree that the mainstream of Western philosophy (Socrates, Plato, Aristotle, Descartes, Kant, Wittgenstein) developed toward the perfection of Socrates’ absolutism. But can the absolutism maintain its central position after analytic philosophy? There are pessimistic views on this problem, such as that of R. Rorty, the standard-bearer of neo-pragmatism. Recently, I proposed quantum language (which is including quantum mechanics, statistics, fuzzy sets, etc.). I think that that this theory is not only one of the most fundamental scientific theories, but also the scientific final destination of Western philosophy. If so, Socrates’ dream has come true. The purpose of this paper is to discuss the above and to inform readers that quantum language has the power to create a paradigm shift from the classical mechanical world view to the quantum mechanical worldview.
基金Cultivation Fund for Innovation Project of Ministry of Education (No.708045)
文摘In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.
文摘This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model.
基金Projects(40301043 and 40171078) supported by the National Natural Science Foundation of China
文摘A new real-time map matching algorithm based on fuzzy logic is proposed. 3 main factors affecting the reliability of map matching, including the distance between the vehicle location and the matching road segment, the angle between the vehicle direction and the road segment direction and the road connectivity are discussed. Fuzzy rules for the distance, angle and connectivity are presented to calculate the matching reliability. 2 indicators for estimating the matching reliability are then derived, one is the lower limit of the reliability, and the other is the limit error of the difference between the maximal value and the second-maximal value of the reliability. A real-time map-matching system based on fuzzy logic is therefore developed. Using the real data of global positioning system(GIS) based navigation and geographic information system(GPS) based road map, the method is verified and the (results) prove the effectiveness of the proposed method.
基金Project(61563032)supported by the National Natural Science Foundation of ChinaProject(18JR3RA133)supported by Gansu Basic Research Innovation Group,China
文摘Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.
文摘As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.
基金Project(90820302) supported by the National Natural Science Foundation of ChinaProject(20110491272) supported by China Postdoctoral Science Foundation of China+2 种基金Project(2012QNZT060) supported by the Fundamental Research Fund for the Central Universities of ChinaProject(11B070) supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProject(2010-2012) supported by the Postdoctoral Science Foundation of Central South University,China
文摘To deal with fault detection and diagnosis with incomplete model for dead reckoning system of mobile robot,an integrative framework of particle filter detection and fuzzy logic diagnosis was devised.Firstly,an adaptive fault space is designed for recognizing both known faults and unknown faults,in corresponding modes of modeled and model-free.Secondly,the particle filter is utilized to diagnose the modeled faults and detect model-free fault according to the low particle weight and reliability.Especially,the proposed fuzzy logic diagnosis can further analyze model-free modes and identify some soft faults in unknown fault space.The MORCS-1 experimental results show that the fuzzy diagnosis particle filter(FDPF) combinational framework improves fault detection and identification completeness.Specifically speaking,FDPF is feasible to diagnose the modeled faults in known space.Furthermore,the types of model-free soft faults can also be further identified and diagnosed in unknown fault space.
基金support through the ARC Linkage LP0989780 grant titled "The study anddevelopment of a 3-D real-time stockpile management system"the support in part from Institute for Mineral and Energy Resources,University of Adelaide 2009-2010,as well as Faculty of Engineering,Computer and Mathematical Sciences strategic research funding,2010
文摘The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.