Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS a...Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.展开更多
During ancient times,human interest in naturally-occurring gases was religious,while it was scientific in the historical age and industrial in modern times.Gases were also utilized for practical purposes and more than...During ancient times,human interest in naturally-occurring gases was religious,while it was scientific in the historical age and industrial in modern times.Gases were also utilized for practical purposes and more than 3000 years before present day,Chinese populations made use of methane for salt extraction while in the 17th century it was observed that native Americans ignited methane seepages.The development of human thinking on gases followed the fundamental steps that characterized the natural sciences during the 18th century scientific revolution that was based on significant improvements in analytical methods.These improvements are still ongoing while present-day scientific publications evidence the spread of the field of interest and more cooperation with geophysical sciences to solve common interest problems.The existence of proper meetings and dedicated scientific journals confirms that gas geochemistry has ended this pioneering phase to enter a more mature condition.展开更多
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact...The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.展开更多
The origins of gases in springs, pools and wells from the Wudalianchi (WDLC) volcanic area are discussed based upon molecular and isotope compositions of the gases. Nine gas and water samples were collected from bubbl...The origins of gases in springs, pools and wells from the Wudalianchi (WDLC) volcanic area are discussed based upon molecular and isotope compositions of the gases. Nine gas and water samples were collected from bubbles and water of the springs and pools in the WDLC volcanic area, Northeastern China, in August 1997. The molecular components were measured with a MAT-271 mass spectrometer (MS), helium isotope ratios with a VG-5400 MS, and δ13C with a MAT-251 MS in the Lanzhou Institute of Geology. The gases are enriched in CO2, and most of the CO2 concentrations are over 80% (V). The helium and methane concentrations have relatively wide ranges of 0.7 to 380×10?6 and 4 to 180×10?6, respectively. The 3He/4He ratios are between 1.05 Ra and 3.1 Ra (Ra = 1.4×10?6); the 4He/20Ne values are between 0.45 and 1011, larger than the atmospheric value (0.32). The δ13C (PDB) values of carbon dioxide range from ?9.6 to ?4.2%%. These geochemical data demonstrate that the spring water is from aquifers at different depths, and that helium and carbon dioxide are derived from the mantle, and are contaminated by crust gases during deep fluid migration. Also, there are larger fluxes of deep-earth matter and energy in the WDLC volcanic area.展开更多
Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid...Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid hydrocarbon phases are not well-constrained.Obayied sub-basin in the Western Desert where oil and gas phases coexist in the Middle Jurassic sandstones of the Khatatba Formation provides an ideal place to investigate the link between oil and gas generation.Geochemical analyses on rock samples(Rock–Eval pyrolysis,vitrinite reflectance,R_(o))and gases(molecular and isotopic composition)were conducted in order to identify the genetic characteristics of the hydrocarbon phases produced.Maturity-relevant parameters(Rock–Eval T_(max),vitrinite reflectance R_(o))elucidate that only Middle Jurassic Khatatba organofacies capable of generating wet and dry hydrocarbon gases.Additionally,the enrichment of C_(7)normal alkanes,mono-branched alkanes relative to polybranched components in the Obayied gases reflect their generation via cracking of oil.Basin modelling results confirm gas generation through both primary and secondary cracking.However,secondary cracking of liquid hydrocarbon phases is volumetrically more significant.Primary cracking of the Khatatba organofacies likely predate and catalyze the secondary cracking of the liquid phases and therefore the volume of generated gas increases incrementally eastward where both processes coexist.The present study highlights the significant role of secondary cracking in the generation and accumulation of huge gas accumulations in the basins containing oil-prone source intervals.展开更多
Recent fluid monitoring work shows that the contents of mantle-derived CO2, He and CH4 increased anomalously in 2002 and 2003. The ^3He/^4He ratio of the deep-fault-type Jinjiang hot springs increased highly anomalous...Recent fluid monitoring work shows that the contents of mantle-derived CO2, He and CH4 increased anomalously in 2002 and 2003. The ^3He/^4He ratio of the deep-fault-type Jinjiang hot springs increased highly anomalously in 2003, and then decreased in 2004. The ^3He/^4He ratio from the thermal-reservoir-type Changbaijulong hot springs increased slowly in 2003, and the increase continued in 2004. The mantle-derived He content of the He released from the Changbaijulong springs increased obviously in 2004. The anomaly of the released gases and the isotopic He was consistent with the trends of seismic activities in the Tianchi volcanic area between 2002 and 2004. The abnormal release of the Jinjiang hot springs apparently decreased after the seismic activities ceased in the second half of 2004, while the abnormal release from the Changbaljulong increased significantly after these seismic activities. It shows that the abnormal release of magmas-derived gases from the thermal-reservoir-type springs lags behind that of the deep-fault-type springs. These characteristics may be of great significance for identifying deep magmatic activity and predicting volcanic earthquakes in the future.展开更多
This paper deals with geochemical features of gas emitted from the Hubin Springs. The Hubin Springs zone, a strong thermal emission zone, is are locatedd at the north edge of the Tianchi caldera lake. Very young depos...This paper deals with geochemical features of gas emitted from the Hubin Springs. The Hubin Springs zone, a strong thermal emission zone, is are locatedd at the north edge of the Tianchi caldera lake. Very young deposits with uncertain eruption date are found on the top area of the Tianwenfeng, which might have been formed in one of the recent eruptions or the Millennium Eruption. It is of significance to study the geochemistry features of the emitting gas from the Hubin Springs to understand the activities of the Tianchi Volcano. This paper systematically sampled and analyzed the gases emitted from the Hubin Springs and discussed their geochemistry features. The results show that there is a high content of deep derived gases, such as CO2, He, CH4 and Ar in Hubin Springs zone. The isotopic ratio of He lies between 4. 18 and 5. 95 Ra. The averaged mantle derived gas content calculated from the ^4He/2^20Ne ratio and He content reaches 67.1%. All these show that the Hubin Springs are located on a special belt of deep gases released in high intensity and large scale. The spatial distribution of Helium isotope is characterized by concavity, showing that this special area may be related to the volcanic edifice. It is highly possible that the released gases represent the residual gas samples of the latest eruptions from the Tianchi Volcano. However more detailed studies are demanded.展开更多
The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up...The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.展开更多
Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity wit...Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity within each reservoir has proved complicated in this field. This study aims to determine the degree of intra-reservoir compartmentalization using gas geochemistry, light hydrocarbon components, and petroleum bulk properties, comparing the results with those obtained from reservoir engineering indicators. For this purpose, a total of 11 samples of oil and associated gas taken from different producing wells in from the Yammama Reservoir were selected. Clear distinctions, in terms of gas isotopic signature and composition, between the wells located in northern and southern parts of the reservoir(i.e. lighter δ13 C1, lower methane concentration, and negative sulfur isotope in the southern part) and light hydrocarbon ratios(e.g. nC 7/toluene, 2,6-dmC7/1,1,3-tmcyC5 and m-xylene/4-mC8) in different oil samples indicated two separate compartments. Gradual variations in a number of petroleum bulk properties(API gravity, V/Ni ratios and asphaltene concentration) provided additional evidence on the reservoir-filling direction, signifying that a horizontal equilibrium between reservoir fluids across the Yammama Reservoir is yet to be achieved. Finally, differences in water-oil contacts and reservoir types further confirmed the compartmentalization of the reservoir into two separate compartments.展开更多
基金supported by the State 973 Project(Grant No.2006CB202308)the National Natural Science Foundation of China(Grant No.40872097)
文摘Systematic analyses of the formation water and natural gas geochemistry in the Central Uplift of the Tarim Basin (CUTB) show that gas invasion at the late stage is accompanied by an increase of the contents of HeS and CO2 in natural gas, by the forming of the high total dissolved solids formation water, by an increase of the content of HCO3^-, relative to Cl^-, by an increase of the 2nd family ions (Ca^2+, Mg^2+, Sr^2+ and Ba^2+) and by a decrease of the content of SO4^2-, relative to Cl^-. The above phenomena can be explained only by way of thermochemicai sulfate reduction (TSR). TSR often occurs in the transition zone of oil and water and is often described in the following reaction formula: ∑CH+CaSO4+H-2O→H2S+CO2+CaCO3. (1) Dissolved SO4^2- in the formation water is consumed in the above reaction, when HeS and CO2 are generated, resulting in a decrease of SO4^2- in the formation water and an increase of both HeS and CO2 in the natural gas. If formation water exists, the generated CO2 will go on reacting with the carbonate to form bicarbonate, which can be dissolved in the formation water, thus resulting in the enrichment of Ca^2+ and HCO3^-. The above reaction can be described by the following equation: CO2+HeO+CaCO3→Ca^2++2HCO3^-. The stratigraphic temperatures of the Cambrian and lower Ordovician in CUTB exceeded 120℃, which is the minimum for TSR to occur. At the same time, dolomitization, which might be a direct result of TSR, has been found in both the Cambrian and the lower Ordovician. The above evidence indicates that TSR is in an active reaction, providing a novel way to reevaluate the exploration potentials of natural gas in this district.
基金supported partially by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Nos.2021YFA0719003,2019YFA0708501)funds from Chinese Academy of Sciences as a visiting professorship for senior international scientists(No.2018VMA0007)。
文摘During ancient times,human interest in naturally-occurring gases was religious,while it was scientific in the historical age and industrial in modern times.Gases were also utilized for practical purposes and more than 3000 years before present day,Chinese populations made use of methane for salt extraction while in the 17th century it was observed that native Americans ignited methane seepages.The development of human thinking on gases followed the fundamental steps that characterized the natural sciences during the 18th century scientific revolution that was based on significant improvements in analytical methods.These improvements are still ongoing while present-day scientific publications evidence the spread of the field of interest and more cooperation with geophysical sciences to solve common interest problems.The existence of proper meetings and dedicated scientific journals confirms that gas geochemistry has ended this pioneering phase to enter a more mature condition.
基金The National Key Science and Technology Special Project(13th Five Year Plan)of the Key Technology of Gas and Oil Exploration in Offshore Deep Water Area(Phase 3)under contract No.2016Zx05026
文摘The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.
文摘The origins of gases in springs, pools and wells from the Wudalianchi (WDLC) volcanic area are discussed based upon molecular and isotope compositions of the gases. Nine gas and water samples were collected from bubbles and water of the springs and pools in the WDLC volcanic area, Northeastern China, in August 1997. The molecular components were measured with a MAT-271 mass spectrometer (MS), helium isotope ratios with a VG-5400 MS, and δ13C with a MAT-251 MS in the Lanzhou Institute of Geology. The gases are enriched in CO2, and most of the CO2 concentrations are over 80% (V). The helium and methane concentrations have relatively wide ranges of 0.7 to 380×10?6 and 4 to 180×10?6, respectively. The 3He/4He ratios are between 1.05 Ra and 3.1 Ra (Ra = 1.4×10?6); the 4He/20Ne values are between 0.45 and 1011, larger than the atmospheric value (0.32). The δ13C (PDB) values of carbon dioxide range from ?9.6 to ?4.2%%. These geochemical data demonstrate that the spring water is from aquifers at different depths, and that helium and carbon dioxide are derived from the mantle, and are contaminated by crust gases during deep fluid migration. Also, there are larger fluxes of deep-earth matter and energy in the WDLC volcanic area.
文摘Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid hydrocarbon phases are not well-constrained.Obayied sub-basin in the Western Desert where oil and gas phases coexist in the Middle Jurassic sandstones of the Khatatba Formation provides an ideal place to investigate the link between oil and gas generation.Geochemical analyses on rock samples(Rock–Eval pyrolysis,vitrinite reflectance,R_(o))and gases(molecular and isotopic composition)were conducted in order to identify the genetic characteristics of the hydrocarbon phases produced.Maturity-relevant parameters(Rock–Eval T_(max),vitrinite reflectance R_(o))elucidate that only Middle Jurassic Khatatba organofacies capable of generating wet and dry hydrocarbon gases.Additionally,the enrichment of C_(7)normal alkanes,mono-branched alkanes relative to polybranched components in the Obayied gases reflect their generation via cracking of oil.Basin modelling results confirm gas generation through both primary and secondary cracking.However,secondary cracking of liquid hydrocarbon phases is volumetrically more significant.Primary cracking of the Khatatba organofacies likely predate and catalyze the secondary cracking of the liquid phases and therefore the volume of generated gas increases incrementally eastward where both processes coexist.The present study highlights the significant role of secondary cracking in the generation and accumulation of huge gas accumulations in the basins containing oil-prone source intervals.
基金This study was financially supported by the Joint Earthquake Science Foundation,CEA(A07058) .
文摘Recent fluid monitoring work shows that the contents of mantle-derived CO2, He and CH4 increased anomalously in 2002 and 2003. The ^3He/^4He ratio of the deep-fault-type Jinjiang hot springs increased highly anomalously in 2003, and then decreased in 2004. The ^3He/^4He ratio from the thermal-reservoir-type Changbaijulong hot springs increased slowly in 2003, and the increase continued in 2004. The mantle-derived He content of the He released from the Changbaijulong springs increased obviously in 2004. The anomaly of the released gases and the isotopic He was consistent with the trends of seismic activities in the Tianchi volcanic area between 2002 and 2004. The abnormal release of the Jinjiang hot springs apparently decreased after the seismic activities ceased in the second half of 2004, while the abnormal release from the Changbaljulong increased significantly after these seismic activities. It shows that the abnormal release of magmas-derived gases from the thermal-reservoir-type springs lags behind that of the deep-fault-type springs. These characteristics may be of great significance for identifying deep magmatic activity and predicting volcanic earthquakes in the future.
基金sponsored by the National Natural Foundation (40172033),China
文摘This paper deals with geochemical features of gas emitted from the Hubin Springs. The Hubin Springs zone, a strong thermal emission zone, is are locatedd at the north edge of the Tianchi caldera lake. Very young deposits with uncertain eruption date are found on the top area of the Tianwenfeng, which might have been formed in one of the recent eruptions or the Millennium Eruption. It is of significance to study the geochemistry features of the emitting gas from the Hubin Springs to understand the activities of the Tianchi Volcano. This paper systematically sampled and analyzed the gases emitted from the Hubin Springs and discussed their geochemistry features. The results show that there is a high content of deep derived gases, such as CO2, He, CH4 and Ar in Hubin Springs zone. The isotopic ratio of He lies between 4. 18 and 5. 95 Ra. The averaged mantle derived gas content calculated from the ^4He/2^20Ne ratio and He content reaches 67.1%. All these show that the Hubin Springs are located on a special belt of deep gases released in high intensity and large scale. The spatial distribution of Helium isotope is characterized by concavity, showing that this special area may be related to the volcanic edifice. It is highly possible that the released gases represent the residual gas samples of the latest eruptions from the Tianchi Volcano. However more detailed studies are demanded.
基金supported by the National 973 Basic Research Program(Grant No.2006CB202308)the Major National Science and Technology Program (2008ZX05008-004-012)
文摘The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation.
基金financially supported by the Exploration Directorate of the National Iranian Oil Company
文摘Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity within each reservoir has proved complicated in this field. This study aims to determine the degree of intra-reservoir compartmentalization using gas geochemistry, light hydrocarbon components, and petroleum bulk properties, comparing the results with those obtained from reservoir engineering indicators. For this purpose, a total of 11 samples of oil and associated gas taken from different producing wells in from the Yammama Reservoir were selected. Clear distinctions, in terms of gas isotopic signature and composition, between the wells located in northern and southern parts of the reservoir(i.e. lighter δ13 C1, lower methane concentration, and negative sulfur isotope in the southern part) and light hydrocarbon ratios(e.g. nC 7/toluene, 2,6-dmC7/1,1,3-tmcyC5 and m-xylene/4-mC8) in different oil samples indicated two separate compartments. Gradual variations in a number of petroleum bulk properties(API gravity, V/Ni ratios and asphaltene concentration) provided additional evidence on the reservoir-filling direction, signifying that a horizontal equilibrium between reservoir fluids across the Yammama Reservoir is yet to be achieved. Finally, differences in water-oil contacts and reservoir types further confirmed the compartmentalization of the reservoir into two separate compartments.