期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Theoretical analysis of influencing factors on resistance in the process of gas migration in coal seams 被引量:2
1
作者 Wang Kai Liu Ang Zhou Aitao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期315-319,共5页
Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille ... Inspired by previous resistance models for porous media, a resistance expression of gas migration within coal seams based on the ideal matchstick geometry, combined with the Darcy equation and the modified Poiseuille equation is proposed. The resistance to gas migration is generally dynamic because of the variations in adsorption swelling and matrix shrinkage. Due to the limitations of experimental conditions,only a theoretical expression of resistance to gas migration in coal is deduced, and the impacts of tortuosity, effective stress and pore pressure on the resistance are then considered. To validate the proposed expression, previous data from other researchers are adopted for the history matching exercise, and the agreement between the two is good. 展开更多
关键词 Porous media gas resistance Tortuosity Effective stress Pore pressure
下载PDF
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane 被引量:5
2
作者 李伟作 赵忠奎 +1 位作者 焦艳华 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2122-2133,共12页
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr... An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction. 展开更多
关键词 Ni-based catalystZrO2 supportHierarchical structure Morphology effect Dry reforming of methane Synthesis gas Coke resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部