A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide...A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.展开更多
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua...A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.展开更多
Deterministic chaos theory offers useful quantitative tools tocharacterize the non-linear dynamic be- havior of a fluidized bed andthe developed complexity theory presents a new approach to evaluatefinite sequences. I...Deterministic chaos theory offers useful quantitative tools tocharacterize the non-linear dynamic be- havior of a fluidized bed andthe developed complexity theory presents a new approach to evaluatefinite sequences. In this paper, the non-linear, hydrodynamicbehavior of the pressure fluctuation signals in a reactor wasdiscussed By chaos parameters and complexity measures. Coherentresults were achieved by our multi-scale analysis, which Furtherexposed the behavior in a gas-solid two-phase system.展开更多
Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hy...Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.展开更多
Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand ...Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.展开更多
Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and sol...Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.展开更多
It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize ...It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.展开更多
In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of ...In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of pulverizer, the separation experiment on sampling material from power plant with a dilute phase fluidized bed to remove pyrite and other minerals and numerical simulation on the separation process were done. The results show that the minimum fluidization velocity is 1.62 cm/s. Pyrite and other minerals in the material are separated. Ash of the upper and bottom layer material account for 33.34% and 73.42% respectively and sulfur content occupy 1.12% and 8.96% respectively. Scanning electron microscopy and spectroscopy tests show that sulfur in the bottom material exist in the form of pyrite. Numerical simulation on the flow field form of the dilute phase separation bed with gas-solid two phase and particle motion verifies the experimental results.展开更多
The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium sep...The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium separation. However, this problem has not been completely solved up to now. In this work, the terminal velocity of an object mov-ing in a gas-solid fluidized bed was experimentally measured and theoretically calculated. The experimental results in-dicated that the plastic viscosity and yield stress of the bed increase as the size of fluidized particles increases, but it varies little when some coarser particles are mixed with the fluidized particles. The resistance to a rising object was an order magnitude greater than that to a settling object. The efficient buoyancy on a flaky object, which lies flatly on the gas distributor, was much less than that calculated by the Archimedes principle. The object does not always rise or set-tle with minimal projective area owing to radial motion of the fluidized particles. But in the lower part of the bed, the bar-shaped objects were likely with minimal projective area rising or settling.展开更多
In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization charact...In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.展开更多
The chaotic scale-up approach by matching the Kolmogorov entropy(E_K) proposed by Schouten et al.(1996) was assessed in two geometrically similar gas–solid fluidized bed columns of 0.14 and 0.44 m diameter.We used fo...The chaotic scale-up approach by matching the Kolmogorov entropy(E_K) proposed by Schouten et al.(1996) was assessed in two geometrically similar gas–solid fluidized bed columns of 0.14 and 0.44 m diameter.We used four conditions of our validated new mechanistic scale-up method based on matching the radial profiles of gas holdup where the local dimensionless hydrodynamic parameters were similar as measured by advanced measurement techniques.These experimental conditions were used to evaluate the validity of the chaotic scale-up method,which were selected based on our new mechanistic scale-up methodology.Pressure gauge transducer measurements at the wall and inside the bed at various local radial locations and at three axial heights were used to estimate KE.It was found that the experimental conditions with similar or close radial profiles of the Kolmogorov entropy and with similar or close radial profiles of the gas holdup achieve the similarity in local dimensionless hydrodynamic parameters,and vice versa.展开更多
A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were ...A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were performed using the two-fluid model based on the kinetic theory of granular flow.A finegrid,which is in the range of 3–4 particle diameters,was utilized in order to capture bubble structures explicitly without breaking down the continuum assumption for the solid phase.A novel bubble tracking scheme was developed in combination with a 3-D detection and tracking algorithm(MS3 DATA)and applied to detect the bubble statistics,such as bubble size,location in each time frame and relative position between two adjacent time frames,from numerical simulations.The spatial coordinates and corresponding void fraction data were sampled at 100 Hz for data analyzing.The bubble coalescence/break-up frequencies and the daughter bubble size distribution were evaluated by using the new bubble tracking algorithm.The results showed that the bubble size distributed non-uniformly over cross-sections in the bed.The equilibrium bubble diameter due to bubble break-up and coalescence dynamics can be obtained,and the bubble rise velocity follows Davidson’s correlation closely.Good agreements were obtained between the computed results and that predicted by using the bubble break-up model proposed in our previous work.The computational bubble tracking method showed the potential of analyzing bubble motions and the coalescence and break-up characteristics based on time series data sets of void fraction maps obtained numerically and experimentally.展开更多
Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent ...Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.展开更多
Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-t...Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-two-dimensional(quasi-2D)fluidized bed,including bubble equivalent diameter,bubble size distribution,average bubble density,bubble aspect ratio,bubble hold-up,bed expansion ratio,bubble radial position,and bubble velocity.The studies were performed by computational particle fluid dynamics(CPFD)numerical simulation and post-processed with digital image analysis(DIA)technique,at superficial gas velocities ranging from 2u_(mf) to 7u_(mf).The simulated results shown that the CPFD simulation combining with DIA technique post-processing could be used as a reliable method for simulating bubble dynamics properties in quasi-2D gas-solid fluidized beds.However,it seemed not desirable for the simulation of bubble motion near the air distributor at higher superficial gas velocity from the simulated average bubble density distribution.The superficial gas velocity significantly affected the bubble equivalent diameter and evolution,while it had little influence on bubble size distribution and bubble aspect ratio distribution for the same particles.Both time-averaged bubble hold-up and bed expansion ratio increased with the increase of superficial gas velocity.Two core-annular flow structures could be found in the fluidized bed for all cases.The average bubble rising velocity increased with the increasing bubble equivalent diameter.For bubble lateral movement,the smaller bubbles might be more susceptible,and superficial gas velocity had a little influence on the absolute lateral velocity of bubbles.The simulated results presented a valuable and novel approach for studying bubble dynamics properties.The comprehensive understanding of bubble dynamics behaviors in quasi-2D gas-solid fluidized beds would provide support in the design,operation,and optimization of gas-solid fluidized bed reactors.展开更多
Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence o...Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence of the target fluid grid on the particle's drag force.A fluidized bed of rod-like particles was chosen as a typical case to investigate the effect of different fluid grid scales on various fluidized bed characteristic parameters.The calculation performance of the semi-resolved and unre-solved CFD-DEM coupling algorithm on key fluidized bed characteristic parameters such as average pressure drop,particle frequency distribution with bed height,and particle orientation distribution were compared.It was found that the semi-resolved CFD-DEM coupling algorithm gradually obtained results with higher consistency with decreasing fluid grid scale for key parameters such as particle frequency distribution with bed height,particle orientation distribution,and time-history mixing index,exhibiting a phenomenon similar to grid independence in fluid simulation.By comparing with experimental results,it was verified that the semi-resolved CFD-DEM coupling algorithm can be applied to simulate multi-granular gas-solid systems with fluid grid scales equivalent to particle scales.This algorithm solves the limitation of fluid grid scale in the unresolved CFD-DEM coupling framework and improves the grid adaptability of the CFD-DEM coupling simulation algorithm.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limite...Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 ℃, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (U_(c)), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 ℃. Experimental results reveal that U_(c) increases with temperature up to 600 ℃, stabilizes within the 600–1200 ℃ range, and then decreases above 1200 ℃, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed U_(c) correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 ℃ and particles of Groups A to D.展开更多
Particle segregation and mixing behavior play a crucial role in industrial processes.This study investigates the saturated jetsam fraction,which indicates the maximum capacity of flotsam to entrain jetsam,in an initia...Particle segregation and mixing behavior play a crucial role in industrial processes.This study investigates the saturated jetsam fraction,which indicates the maximum capacity of flotsam to entrain jetsam,in an initially separated binary fluidized bed with particle size differences.According to the value of saturated jetsam fraction,three distinct regimes-segregation,mixing,and an intermediate regime-are identified.Moreover,intriguing relationships between the saturated jetsam fraction and superficial gas velocity are observed,exhibiting monotonic trends in both the segregation and mixing regimes,while a unique volcano-shaped curve in the intermediate regime.Additionally,a comprehensive entrainment model based on two-fluid model elucidates the observed phenomena,emphasizing the significance of mixing behavior in fluidized layer on the saturated jetsam fraction.This work offers potential insights for evaluating segregation in industrial applications.展开更多
Direct energy budget is carried out for both cold and hot flow in gas–solid fluidization systems.First,the energy paths are proposed from thermodynamic viewpoints.Energy consumption means total power input to the spe...Direct energy budget is carried out for both cold and hot flow in gas–solid fluidization systems.First,the energy paths are proposed from thermodynamic viewpoints.Energy consumption means total power input to the specific system,and it can be decomposed into energy retention and energy dissipation.Energy retention is the variation of accumulated mechanical energy in the system,and energy dissipation is the energy converted to heat by irreversible processes.Then based on the Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)framework,different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall.In order to clarify the energy budget,it is important to identify which system is studied:the particle-fluid system or the particle sub-system.For the cold flow,the total energy consumption of the particle sub-system can well indicate the onset of bubbling and turbulent,while the variation of local energy consumption terms can reflect the evolution of heterogeneous structures.For the hot flow,different heat transfer mechanisms are analyzed and the solver is modified to reproduce the experimental results.The impact of the heat transfer mechanisms and heat production on energy consumption is also investigated.The proposed budget method has proven to be energy-conservative and easy to conduct,and it is hopeful to be applied to other multiphase flow systems.展开更多
The energy minimization multi-scale(EMMS)is a heterogeneous drag model widely used to simulate gas-solid fluidized beds.In this work,we conducted computational fluid dynamics simulations of a gas-solid fluidized bed f...The energy minimization multi-scale(EMMS)is a heterogeneous drag model widely used to simulate gas-solid fluidized beds.In this work,we conducted computational fluid dynamics simulations of a gas-solid fluidized bed for Geldart B particles to compare the EMMS with the homogeneous Gidaspow drag model.The results from both the homogeneous and heterogeneous drag models were compared with literature experimental data on pressure drop and bed expansion.There was no noticeable difference in predicted bed characteristics in the slugging regime.However,in the turbulent regime,the EMMS model predicted slightly lower bed expansion than did the Gidaspow model.We evaluated the effects of solid-solid and solid-wall interaction parameters by varying the restitution and specularity coefficients.Bed expansion increases by a factor of 1.05-1.08 when the restitution coefficient increases from 0.9 to 0.99.The models predict a higher solid volume fraction and higher solid downflow velocity near the wall for a low specularity coefficient of 0.01 or 0.When we considered solid phases of different sizes to model polydisperity,the simulation predicted vertical segregation of 300,350,and 400μm in the fluidized region due to gravity.Furthermore,the drag models made similar predictions in bad characteristics from cold model simulation ofa polysilicon fluidized-bed reactor,although there was very little vertical segregation of solid particles for this case.展开更多
基金Projects(50921002, 50774084) supported by the National Natural Science Foundation of ChinaProject(2007AA05Z318) supported by the National High-tech Research and Development Program of China+1 种基金Project(BK2010002) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(20100480473) supported by the China Postdoctoral Science Foundation
文摘A 40-60 t/h modularized dry coal beneficiation process with a novel method to control the bed was designed around a gas-solid fluidized bed separator. Furthermore, the hydrodynamics of medium-solids consisting of wide-size-range magnetite powder (0.3-0.06 ram) and 〈1 mm fine coal were numerically studied. The simulation results show that the fluidization performance of the wide-size-range medium-solid bed is good. The separation performance of the modularized system was then investigated in detail using a mixture of 〈0.3 mm magnetite powder (mass fraction of 0.3-0.06 mm particles is 91.38 %) and 〈1 mm fine coal as solid media. The experimental results show that at separation densities of 1.33 g/cm^3 or 1.61 g/cm^3, 50-6 mm coal can be separated effectively with probable error, E, values of 0.05 g/cm^3 and 0.06 g/cm^3, respectively. This technique is beneficial for saving water resources and for the clean utilization of coal.
基金support from National Basic Research Program of China(No.2009CB219801)National Natural Science Foundation of China(No.20976191)+1 种基金International Cooperative Program of Guizhou Province([2009]700110)Program for New Century Excellent Talents in University(NCET-09-0342)
文摘A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface.
基金Supported by the National Natural Science Foundation of China (No. 60075003).
文摘Deterministic chaos theory offers useful quantitative tools tocharacterize the non-linear dynamic be- havior of a fluidized bed andthe developed complexity theory presents a new approach to evaluatefinite sequences. In this paper, the non-linear, hydrodynamicbehavior of the pressure fluctuation signals in a reactor wasdiscussed By chaos parameters and complexity measures. Coherentresults were achieved by our multi-scale analysis, which Furtherexposed the behavior in a gas-solid two-phase system.
基金Supported by the Doctoral Foundation of China (20050251006)
文摘Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.
文摘Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.
基金support from the Major State Basic Research Development Program of China (973 Program,2005CB221205)National Natural Science Foundation of China (No.20490200 and 20576076)
文摘Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.
文摘It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.
基金supported financially by the National Natural Science Foundation of China (Nos. 51074156 and 50921002)
文摘In order to reduce the energy consumption and subsequent air pollution of coal-fired power station, based on the analysis to size and density distribution of particles from the recirculating load of the classifier of pulverizer, the separation experiment on sampling material from power plant with a dilute phase fluidized bed to remove pyrite and other minerals and numerical simulation on the separation process were done. The results show that the minimum fluidization velocity is 1.62 cm/s. Pyrite and other minerals in the material are separated. Ash of the upper and bottom layer material account for 33.34% and 73.42% respectively and sulfur content occupy 1.12% and 8.96% respectively. Scanning electron microscopy and spectroscopy tests show that sulfur in the bottom material exist in the form of pyrite. Numerical simulation on the flow field form of the dilute phase separation bed with gas-solid two phase and particle motion verifies the experimental results.
基金Projects (504740309021003550025411) supported by National Natural Science Foundation of China
文摘The settling behavior of coarse particles in a gas-solid fluidized bed was experimentally studied by using magnetic tracer. It is well known that the calculation of terminal velocity is of interest in dense medium separation. However, this problem has not been completely solved up to now. In this work, the terminal velocity of an object mov-ing in a gas-solid fluidized bed was experimentally measured and theoretically calculated. The experimental results in-dicated that the plastic viscosity and yield stress of the bed increase as the size of fluidized particles increases, but it varies little when some coarser particles are mixed with the fluidized particles. The resistance to a rising object was an order magnitude greater than that to a settling object. The efficient buoyancy on a flaky object, which lies flatly on the gas distributor, was much less than that calculated by the Archimedes principle. The object does not always rise or set-tle with minimal projective area owing to radial motion of the fluidized particles. But in the lower part of the bed, the bar-shaped objects were likely with minimal projective area rising or settling.
基金supported by the China Ocean Mineral Resources Research&Development Program(DY125-15-T-08)the National Natural Science Foundation of China(21176026,21176242)。
文摘In the present paper,the experimental method and computational fluid dynamics(CFD)method were used to investigate the effect of gas distributors with different orifice sizes and orifice pitches on fluidization characteristics in a gas-solid fluidized bed.The Euler-Euler two fluid model(TFM)approach based on the kinetic theory of granular flow(KTGF)and the standard k-epsilon turbulence model was employed in the numerical simulation by using ANSYS Fluent 15.0.The results showed that the orifice size and the orifice pitch of gas distributor had a significant influence on the flow characteristics in the gas-solid fluidized bed.With a decreasing orifice size and orifice pitch of gas distributor having the same opening area,the distributor pressure drop,the initial bubble size,and the height of dead zone just above the distributor were decreased,and the bed pressure drop was increased more than that of the larger orifice size and orifice pitch of distributors,the distribution of solid volume fraction was also more homogeneous for the smaller orifice size.
基金the Multiphase Reactors Engineering and Applications Laboratory(mReal) for funding and support
文摘The chaotic scale-up approach by matching the Kolmogorov entropy(E_K) proposed by Schouten et al.(1996) was assessed in two geometrically similar gas–solid fluidized bed columns of 0.14 and 0.44 m diameter.We used four conditions of our validated new mechanistic scale-up method based on matching the radial profiles of gas holdup where the local dimensionless hydrodynamic parameters were similar as measured by advanced measurement techniques.These experimental conditions were used to evaluate the validity of the chaotic scale-up method,which were selected based on our new mechanistic scale-up methodology.Pressure gauge transducer measurements at the wall and inside the bed at various local radial locations and at three axial heights were used to estimate KE.It was found that the experimental conditions with similar or close radial profiles of the Kolmogorov entropy and with similar or close radial profiles of the gas holdup achieve the similarity in local dimensionless hydrodynamic parameters,and vice versa.
基金supported by the National Natural Science Foundation of China(21908062)。
文摘A computational study was carried out on bubble dynamic behaviors and bubble size distributions in a pressurized lab-scale gas-solid fluidized bed of Geldart A particles.High-resolution 3-D numerical simulations were performed using the two-fluid model based on the kinetic theory of granular flow.A finegrid,which is in the range of 3–4 particle diameters,was utilized in order to capture bubble structures explicitly without breaking down the continuum assumption for the solid phase.A novel bubble tracking scheme was developed in combination with a 3-D detection and tracking algorithm(MS3 DATA)and applied to detect the bubble statistics,such as bubble size,location in each time frame and relative position between two adjacent time frames,from numerical simulations.The spatial coordinates and corresponding void fraction data were sampled at 100 Hz for data analyzing.The bubble coalescence/break-up frequencies and the daughter bubble size distribution were evaluated by using the new bubble tracking algorithm.The results showed that the bubble size distributed non-uniformly over cross-sections in the bed.The equilibrium bubble diameter due to bubble break-up and coalescence dynamics can be obtained,and the bubble rise velocity follows Davidson’s correlation closely.Good agreements were obtained between the computed results and that predicted by using the bubble break-up model proposed in our previous work.The computational bubble tracking method showed the potential of analyzing bubble motions and the coalescence and break-up characteristics based on time series data sets of void fraction maps obtained numerically and experimentally.
文摘Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.
基金the financial support provided by National Key R&D Project of China(grant No.2020YFB0606303)the technical supports received from Sam Clark in CPFD Software,LLC of USA,and from Hi-Key Technology Incorporated of China.
文摘Bubble dynamics properties play a crucial and significant role in the design and optimization of gas-solid fluidized beds.In this study,the bubble dynamics properties of four B-particles were investigated in a quasi-two-dimensional(quasi-2D)fluidized bed,including bubble equivalent diameter,bubble size distribution,average bubble density,bubble aspect ratio,bubble hold-up,bed expansion ratio,bubble radial position,and bubble velocity.The studies were performed by computational particle fluid dynamics(CPFD)numerical simulation and post-processed with digital image analysis(DIA)technique,at superficial gas velocities ranging from 2u_(mf) to 7u_(mf).The simulated results shown that the CPFD simulation combining with DIA technique post-processing could be used as a reliable method for simulating bubble dynamics properties in quasi-2D gas-solid fluidized beds.However,it seemed not desirable for the simulation of bubble motion near the air distributor at higher superficial gas velocity from the simulated average bubble density distribution.The superficial gas velocity significantly affected the bubble equivalent diameter and evolution,while it had little influence on bubble size distribution and bubble aspect ratio distribution for the same particles.Both time-averaged bubble hold-up and bed expansion ratio increased with the increase of superficial gas velocity.Two core-annular flow structures could be found in the fluidized bed for all cases.The average bubble rising velocity increased with the increasing bubble equivalent diameter.For bubble lateral movement,the smaller bubbles might be more susceptible,and superficial gas velocity had a little influence on the absolute lateral velocity of bubbles.The simulated results presented a valuable and novel approach for studying bubble dynamics properties.The comprehensive understanding of bubble dynamics behaviors in quasi-2D gas-solid fluidized beds would provide support in the design,operation,and optimization of gas-solid fluidized bed reactors.
基金funded by the National Natural Science Foundation of China (grant No.11972250)the National Key R&D Program of China (grant Nos.22YFE0207000 and 2022YFC3004505).
文摘Based on a semi-resolved CFD-DEM coupling method,this study proposed a method that uses the minimum distance between the fluid grid and the particle boundary as a reference value to determine the degree of influence of the target fluid grid on the particle's drag force.A fluidized bed of rod-like particles was chosen as a typical case to investigate the effect of different fluid grid scales on various fluidized bed characteristic parameters.The calculation performance of the semi-resolved and unre-solved CFD-DEM coupling algorithm on key fluidized bed characteristic parameters such as average pressure drop,particle frequency distribution with bed height,and particle orientation distribution were compared.It was found that the semi-resolved CFD-DEM coupling algorithm gradually obtained results with higher consistency with decreasing fluid grid scale for key parameters such as particle frequency distribution with bed height,particle orientation distribution,and time-history mixing index,exhibiting a phenomenon similar to grid independence in fluid simulation.By comparing with experimental results,it was verified that the semi-resolved CFD-DEM coupling algorithm can be applied to simulate multi-granular gas-solid systems with fluid grid scales equivalent to particle scales.This algorithm solves the limitation of fluid grid scale in the unresolved CFD-DEM coupling framework and improves the grid adaptability of the CFD-DEM coupling simulation algorithm.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
基金supported by the National Natural Science Foundation of China(grant No.U22A20410).
文摘Turbulent fluidized bed proves effective in industrial processes due to superior heat and mass transfer and chemical reaction performance. However, understanding the transition to turbulent fluidization remains limited, especially at temperatures exceeding 1000 ℃, making it challenging to develop high-temperature fluidized bed applications. This paper presents an experimental investigation on the turbulent fluidization onset velocity (U_(c)), measured in a 30 mm diameter bed using corundum particles with average diameters from 0.68 mm to 1.58 mm in temperatures from ambient to 1600 ℃. Experimental results reveal that U_(c) increases with temperature up to 600 ℃, stabilizes within the 600–1200 ℃ range, and then decreases above 1200 ℃, demonstrating the varying relative significance of hydrodynamic and interparticle forces at different temperatures. To help design and operate high-temperature applications of turbulent fluidization, we developed U_(c) correlations based on experimental data from both literature sources and this study, covering temperatures of up to 1600 ℃ and particles of Groups A to D.
基金support from the National Natural Science Foundation of China (Grant Nos.22308187,22208186,22278238,and 22238004)the Beijing Nova Program (Grant No.2022118)the Key Research and Development Program of Inner Mongolia and Ordos,and the Ordos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutrality (Ordos Laboratory).
文摘Particle segregation and mixing behavior play a crucial role in industrial processes.This study investigates the saturated jetsam fraction,which indicates the maximum capacity of flotsam to entrain jetsam,in an initially separated binary fluidized bed with particle size differences.According to the value of saturated jetsam fraction,three distinct regimes-segregation,mixing,and an intermediate regime-are identified.Moreover,intriguing relationships between the saturated jetsam fraction and superficial gas velocity are observed,exhibiting monotonic trends in both the segregation and mixing regimes,while a unique volcano-shaped curve in the intermediate regime.Additionally,a comprehensive entrainment model based on two-fluid model elucidates the observed phenomena,emphasizing the significance of mixing behavior in fluidized layer on the saturated jetsam fraction.This work offers potential insights for evaluating segregation in industrial applications.
基金supported by National Natural Science Foundation of China(grant No.22078327)Innovation Academy for Green Manufacture,Chinese Academy of Sciences(grant No.IAGM-2019-A13)the State Key Laboratory of Multiphase Complex Systems(grant No.MPCS-2022-A-01).
文摘Direct energy budget is carried out for both cold and hot flow in gas–solid fluidization systems.First,the energy paths are proposed from thermodynamic viewpoints.Energy consumption means total power input to the specific system,and it can be decomposed into energy retention and energy dissipation.Energy retention is the variation of accumulated mechanical energy in the system,and energy dissipation is the energy converted to heat by irreversible processes.Then based on the Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)framework,different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall.In order to clarify the energy budget,it is important to identify which system is studied:the particle-fluid system or the particle sub-system.For the cold flow,the total energy consumption of the particle sub-system can well indicate the onset of bubbling and turbulent,while the variation of local energy consumption terms can reflect the evolution of heterogeneous structures.For the hot flow,different heat transfer mechanisms are analyzed and the solver is modified to reproduce the experimental results.The impact of the heat transfer mechanisms and heat production on energy consumption is also investigated.The proposed budget method has proven to be energy-conservative and easy to conduct,and it is hopeful to be applied to other multiphase flow systems.
基金This research was supported by Korea Electric Power Corpora-tion(Grant number:R18XA06-14)supported by the Human Resources Development(No.20184030202070)of the Korea Insti-tute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government Ministry of Trade,Industry and Energy.
文摘The energy minimization multi-scale(EMMS)is a heterogeneous drag model widely used to simulate gas-solid fluidized beds.In this work,we conducted computational fluid dynamics simulations of a gas-solid fluidized bed for Geldart B particles to compare the EMMS with the homogeneous Gidaspow drag model.The results from both the homogeneous and heterogeneous drag models were compared with literature experimental data on pressure drop and bed expansion.There was no noticeable difference in predicted bed characteristics in the slugging regime.However,in the turbulent regime,the EMMS model predicted slightly lower bed expansion than did the Gidaspow model.We evaluated the effects of solid-solid and solid-wall interaction parameters by varying the restitution and specularity coefficients.Bed expansion increases by a factor of 1.05-1.08 when the restitution coefficient increases from 0.9 to 0.99.The models predict a higher solid volume fraction and higher solid downflow velocity near the wall for a low specularity coefficient of 0.01 or 0.When we considered solid phases of different sizes to model polydisperity,the simulation predicted vertical segregation of 300,350,and 400μm in the fluidized region due to gravity.Furthermore,the drag models made similar predictions in bad characteristics from cold model simulation ofa polysilicon fluidized-bed reactor,although there was very little vertical segregation of solid particles for this case.