Exploring genetic mechanism of the first female flower node and the first male flower node in bitter gourd has practical significance for formulating breeding strategy. In this article, a cross was made between CN19-1...Exploring genetic mechanism of the first female flower node and the first male flower node in bitter gourd has practical significance for formulating breeding strategy. In this article, a cross was made between CN19-1 and Thai4-6, and the F2segregation population was also constructed through F1selfing. The genetic characteristics of the first female flower node and the first male flower node were analyzed by adopting the major gene plus polygene mixed genetic model. The data analysis results showed that the first female flower node and the first male flower node were continuous distribution in the F2segregation population. E-2 model was the most suitable model for the genetic analysis of the first female flower node and the first male flower node. The additive effect values of the 2 pairs of major genes controlling the first female flower node were 2.722 and 1.862 8 respectively, the dominant effect values were-2.721 6 and-0.171 8, respectively. The additive effect value of polygene was-0.839 2, and the dominant effect value of polygene was 2.225 4. The heritability of major genes and polygene were 83.73% and 1.54%, respectively. The additive effect values of the 2 pairs of major genes controlling the first male flower node were 17.746 9 and 3.972, respectively, the dominant effect values were 5.191 6 and-3.972, respectively. The additive effect value of polygene was-20.530 5, and the dominant effect value was-4.141 4. The heritability of major genes and polygene was 92.34% and 4.7%, respectively. This study could provide a theoretical basis for bitter gourd breeding.展开更多
[ Objective ] The study aimed to reveal the genetic model of a biomass mutant in Oryza sativa. [ Method ] In the process of screening and identification of Bar-transgenic rice, a biomass mutant was found in 10 lines o...[ Objective ] The study aimed to reveal the genetic model of a biomass mutant in Oryza sativa. [ Method ] In the process of screening and identification of Bar-transgenic rice, a biomass mutant was found in 10 lines of T1 progenies. The mutant was investigated for genetic analysis and agronomic traits by herbicide spraying and PCR amplification. [ Result] The segregation ratio is consistent with mendelian law(3:1). The mutant assumed not only higher plant height, wider straw and earlier florescence, but also more tillers, bigger spikes and resultantly higher biomass. PCR detections indicated that no co-segregation was observed between mutant traits and target gene(Bar) in the T-DNA inserted, proving that the mutant is not caused by the insertion of T-DNA containing target gene (Bar). [ Conclusion] Our study may avail to understand the cloning of mutant gene and the mechanism of the mutant gene on biomass.展开更多
A mutant with abnormal hull was first discovered from a twin-seedling strain W2555 in rice (Oryza sativa L.). The mutant had sparse branches and decreased number of florets from the base to the peak. Frequently, the...A mutant with abnormal hull was first discovered from a twin-seedling strain W2555 in rice (Oryza sativa L.). The mutant had sparse branches and decreased number of florets from the base to the peak. Frequently, the florets at the top of the panicle did not develop completely. The underdeveloped florets often showed slender and white in their life cycle. Genetic analysis indicated that the mutant traits were controlled by a single recessive gene (temporarily designated as ah). ah gene controlled the development of inflorescence meristem and the flower organ. The florets of mutant showed degenerated lemma and palea. Stamens and lodicules were homeoticly transformed into pistils and palea/lemma-like structures, respectively. It seemed that ah mutant phenotypes of the homeotic conversions in lodicules and stamens were very similar to that of the B loss-of-function spwl gene reported previously in rice.展开更多
[Objective] Infectious bursal disease (IBD) is a highly contagious immuno- suppressive disease caused by infectious bursal disease virus (IBDV). IBDV is ge- netically prone to mutation, which results in challenges...[Objective] Infectious bursal disease (IBD) is a highly contagious immuno- suppressive disease caused by infectious bursal disease virus (IBDV). IBDV is ge- netically prone to mutation, which results in challenges to the disease prevention and control. Thus, it is necessary to continuously monitor the prevalence of IBDV. [Method] 36 IBDVs were identified from ten provinces in China from 2009 to 2012. Partial fragments of VP2, including the hypervariable region (HVR), from new iso- lates were sequenced and analyzed through comparisons with published sequences of IBDV, including 18 strains isolated previously by our lab and 24 reference strains from China and around the world. [Result] Phylogenetic analysis showed a co-exis- tence of IBDV strains belonging to classic, variant, attenuated, and very virulent IB- DV (wlBDV) in China. wlBDVs remain the predominant strains in China and the new subgroup was emerging. Alignment analysis revealed several distinct amino acid mutations that might be involved in virulence or antigenicity variation. [Conclu- sion] The results offered evolutionary clues showing the emerging trend of obvious variations and diversity of IBDV in major poultry-producing regions of China particu- larly in recent years. These findings will contribute to a better understanding of the genetic evolution of IBDV.展开更多
Heterosis plays an important role in the development of new crop varieties with high-yielding, good-quality and biotic/abiotic stresses while male sterile line de- velopment is the key step to determine the success of...Heterosis plays an important role in the development of new crop varieties with high-yielding, good-quality and biotic/abiotic stresses while male sterile line de- velopment is the key step to determine the success of heterosis utilization. A male sterile mutant, M207A was created in proso millet (Panicum mi/iaceurn, 2n=4x=36) for the first time using 60Co-y ray mutagenesis. Fertility identification and genetic analysis were carried out to characterize the mutant for its possible use for hetero- sis utilization in proso millet. First the sterility was investigated using both field sur- vey and indoor pollen microscopy identification. Then Pollinated by normal fertile proso millet cultivars, F1 and F2 populations from the mutant were obtained. Mean- while primary genetic analysis was also conducted using above populations in dif- ferent experimental sites, seasons and years. The results showed that the male sterile plant exhibited closed glumes, browning and dry anthers with few normal pollens. The sterility was stable and sterility rate was above 95% on average. The segregation ratio of fertile to sterile plants was 35:1 in the fertile selfing F2 popula- tion indicating that the mutant was a genic male sterility belonging to a pollen-less type controlled by a single recessive gene. The creation of the mutant, M207A can play a key role for heterosis utilization in proso millet.展开更多
The red swamp crayfish,Procambarus clarkii,is an economically important species especially in China.Their exoskeleton places serious constraints on growth and culture management.Their growth is achieved through interm...The red swamp crayfish,Procambarus clarkii,is an economically important species especially in China.Their exoskeleton places serious constraints on growth and culture management.Their growth is achieved through intermittent molting/ecdysis.The longitudinal genetic dynamics for growth-related traits at different ecdysial points in P.clarkii has been unclear to date.In this study,conditional genetic analysis was carried out for growth-related traits(body weight,body length,chela length,and cephalothorax length)based upon a mixed genetic model with conditional additive,dominance,and genotype by environment effects in P.clarkii.A complete diallel cross was made among three geographic populations of P.clarkii for the genetic mating design.Results of the conditional genetic analysis showed that from 4 th molt to 9 th molt the conditional additive variations were increased significantly whereas the conditional non-additive genetic variations(dominance and genotype by environment interaction)were decreased significantly for these growth-related traits.This indicated that lots of new expression of additive effect genes for body weight,body length,chela length,and cephalothorax length occurred during ontogeny,and environment played a signifi cant role in the expression of genes affecting these growth-related traits.Growth of the four traits was mainly affected by non-additive genetic effects in early developmental stage(prior to 4 th molt).The cumulative conditional additive variation for the growth-related traits from 4 th molt to 9 th molt accounted for a large majority of the total conditional additive variations from 2 nd molt to 9 th molt,indicating that this period was very important for the growth of this species.Using the conditional analysis method,dynamics of growth-related traits during an important ontogenetic phase of red swamp crayfish was uncovered.Our results provide valuable insights into refining production of this species.展开更多
Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-ef...Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).展开更多
A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longe...A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chill(t).展开更多
To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui ...To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.展开更多
One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus ...One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like H1N1, NS from classical swine H1N1, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine.展开更多
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that t...A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.展开更多
A multi-glume (mg) mutant was obtained by screening the T-DNA inserted mutant pool. Anatomical observation revealed that the florets of the mutant showed elongated leafy paleas/lemmas and palea/lemma-like structures...A multi-glume (mg) mutant was obtained by screening the T-DNA inserted mutant pool. Anatomical observation revealed that the florets of the mutant showed elongated leafy paleas/lemmas and palea/lemma-like structures, just like multi-glumes. Among the 215 observed florets of the mutant, 14.27% were failed to produce pistil and stamens, 23.72% showed extra floret generated on the same rachilla, while 62.01% consisted of one to nine stamens and one to three pistils in a single floret. On the other hand, in some cases the transparent bulged vesile-like tissue could be observed at the basis of filament. The mutant showed glumaceous Iodicules, which prevented the florets from opening in natural conditions, while the absolute male and female sterility was an obvious character of the current mutant. Observation on the process of floral organ morphogenesis by a scanning electron microscopy (SEM) indicated that no phenotype difference in floret primordia was found between the wild-type and the mutant. Meanwhile, for the mutant, the beginning of stamen and pistil primordial differentiation was later than the wild type and the palea/lemma-like structure continued to differentiate after the formation of normal palea and lemma. Furthermore, in the mutant the asymmetrical division of floral primordial caused variation in the number of stamens and pistils. Therefore, the genetic analyses indicated that the mutation phenotype was a recessive trait controlled by a single gene and co-segregated with the T-DNA. Based on the phenotypic characteristics, it could be deduced that the mutant was the result of homeotic conversion from the function of the class E genes in ABCD model.展开更多
A hundred winter wheat and 41 spring wheat cultivars and advanced lines were used to investigate the distribution of grain hardness in Chinese wheats and correlations between grain hardness and other kernel traits. P1...A hundred winter wheat and 41 spring wheat cultivars and advanced lines were used to investigate the distribution of grain hardness in Chinese wheats and correlations between grain hardness and other kernel traits. P1, P2, F1 , F2 and F3 from three crosses, i. e. , Liken2/Yumai2, 85Zhong33/Wenmai6 and 85Zhong33/95Zhong459 were sown to study the genetics of grain hardness. Significant correlation was observed between hardness measured by Single Kernel Characteristic System 4100 (SKCS 4100) and Near Infrared (NIR) Spectroscopy, r ranging from 0.85 to 0.94. Chinese wheat is a mixed population in terms of hardness, ranging from very soft to very hard. For autumn-sown wheat, on average, grain hardness decreases from north to south and spring-sown wheat is dominant with hard type. Hardness is negatively associated with flour color, and its associations with flour yield and ash content differ in winter and spring wheats. Grain hardness is controlled by a major gene and several minor genes with additive effect mostly, but dominant effect is also observed, with heritability of 0.78.展开更多
A mutant was isolated from the M2 of 60Co-T ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclose...A mutant was isolated from the M2 of 60Co-T ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as espl (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA~ did not rescue the panicle enclosure. Using an F2 and a BC, population of the cross between espl and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of-260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.展开更多
Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picomaviridae family and is the major cause of Hand, foot, and mouth disease (HFMD) in children. Different strains from Gansu were cloned and the ...Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picomaviridae family and is the major cause of Hand, foot, and mouth disease (HFMD) in children. Different strains from Gansu were cloned and the P1 protein was sequenced and analysed. Results indicate that there are three kinds of EV71 infections prevalent in Gansu. The VP 1 protein from one of these strains, 55F, was expressed. The recombinant protein was expressed with high level and reacted specifically with the EV71 patient antibody, the recombinant protein was also applied to raise antiserum in rabbits and after the fourth injection a high titer of antiserum was detected by ELISA assay. These data are useful for further clarification of prevalent EV71 strains in the north of China at the molecular level and provide a basis for EV71 diagnosis.展开更多
The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to ...The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 )Jmol/(m^2·s), then turned dark-red at the light intensity of 180 pmol/(m^2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsrgene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsrgene in rice.展开更多
In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines, in this study, wheat varieties 18A, 18B and 99AR144-1 were used as experimental m...In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines, in this study, wheat varieties 18A, 18B and 99AR144-1 were used as experimental materials to establish F2 fertility-segregating population. Plant quantitative trait "major gene + polygene mixed mo- del" separation analysis method and simple sequence repeat (SSR) molecular markers were adopted for genetic analysis of four generations, including the parents (P~ and P2), and hybrid (G and G) populations. The results show that AL-type fertility restoring gene is controlled by two pairs of additive-dominant-epistatic genes and addi- tive-dominant polygene; two primers linked to fertility restoring genes were selected by SSR molecular markers, including Xgwm95 on chromosome 2A and Barc61 on chromosome 1B, with the linkage distance of 15.0 cM and 18.0 cM, respectively. Based on verification, these two markers are reliable for distinguishing AL-type wheat ste- rile lines and restorer lines.展开更多
A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tille...A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.展开更多
The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice va...The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice varieties. The genetic analysis was based on the stable lines in F2 population. The stable lines may appear from some combinations of EGS rice crossing with each other and EGS rice crossing with conventional varieties at different frequencies, but stable lines didn't appear in conventional varieties crossing with conventional varieties. Genetic analysis results indicated that the EGS phenomena should just exist in special rice materials, and the frequency of stable lines was closely related to the EGS traits of parents. The EGS traits were neither qualitative nor quantitative traits, and they were controlled by neither dominant genes nor recessive genes. The EGS traits might be inherited by F1 single plant, and the traits of F3 and F4 were corresponded to those of F2 population, i.e. F3 and F4 lines derived from non-segregating F2 showed uniform agronomic traits, and those from segregating F2.did not. The agronomic traits of EGS lines were consistent with those of F1 single plant. On the other hand, when EGS lines occurred, the segregating lines in Mendelian manner were also observed in all F2 population of the same combination. It was suggested that the reason why the stable strains occurred might be a special factor to control (open/close) gene at the beginning of cell division in zygote, resulting in closing mitosis and opening somatic reduction. The somatic reduction of zygote resulted in recombination and homozygosity forming in F1 single plant, and some lines with uniform agronomic traits were observed in some lines of F2 population.展开更多
基金Supported by Hainan Science and Technology Project (No. ZDYF2020229ZDKJ2021010)Scientific Research Program of Hainan Key Laboratory of Vegetable Biology and Hainan Key Laboratory for Quality Regulation of Tropical Horticultural Crops (No. HNZDSYS(YY)-03)。
文摘Exploring genetic mechanism of the first female flower node and the first male flower node in bitter gourd has practical significance for formulating breeding strategy. In this article, a cross was made between CN19-1 and Thai4-6, and the F2segregation population was also constructed through F1selfing. The genetic characteristics of the first female flower node and the first male flower node were analyzed by adopting the major gene plus polygene mixed genetic model. The data analysis results showed that the first female flower node and the first male flower node were continuous distribution in the F2segregation population. E-2 model was the most suitable model for the genetic analysis of the first female flower node and the first male flower node. The additive effect values of the 2 pairs of major genes controlling the first female flower node were 2.722 and 1.862 8 respectively, the dominant effect values were-2.721 6 and-0.171 8, respectively. The additive effect value of polygene was-0.839 2, and the dominant effect value of polygene was 2.225 4. The heritability of major genes and polygene were 83.73% and 1.54%, respectively. The additive effect values of the 2 pairs of major genes controlling the first male flower node were 17.746 9 and 3.972, respectively, the dominant effect values were 5.191 6 and-3.972, respectively. The additive effect value of polygene was-20.530 5, and the dominant effect value was-4.141 4. The heritability of major genes and polygene was 92.34% and 4.7%, respectively. This study could provide a theoretical basis for bitter gourd breeding.
文摘[ Objective ] The study aimed to reveal the genetic model of a biomass mutant in Oryza sativa. [ Method ] In the process of screening and identification of Bar-transgenic rice, a biomass mutant was found in 10 lines of T1 progenies. The mutant was investigated for genetic analysis and agronomic traits by herbicide spraying and PCR amplification. [ Result] The segregation ratio is consistent with mendelian law(3:1). The mutant assumed not only higher plant height, wider straw and earlier florescence, but also more tillers, bigger spikes and resultantly higher biomass. PCR detections indicated that no co-segregation was observed between mutant traits and target gene(Bar) in the T-DNA inserted, proving that the mutant is not caused by the insertion of T-DNA containing target gene (Bar). [ Conclusion] Our study may avail to understand the cloning of mutant gene and the mechanism of the mutant gene on biomass.
基金This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRTO453).
文摘A mutant with abnormal hull was first discovered from a twin-seedling strain W2555 in rice (Oryza sativa L.). The mutant had sparse branches and decreased number of florets from the base to the peak. Frequently, the florets at the top of the panicle did not develop completely. The underdeveloped florets often showed slender and white in their life cycle. Genetic analysis indicated that the mutant traits were controlled by a single recessive gene (temporarily designated as ah). ah gene controlled the development of inflorescence meristem and the flower organ. The florets of mutant showed degenerated lemma and palea. Stamens and lodicules were homeoticly transformed into pistils and palea/lemma-like structures, respectively. It seemed that ah mutant phenotypes of the homeotic conversions in lodicules and stamens were very similar to that of the B loss-of-function spwl gene reported previously in rice.
基金Supported by National Natural Science Foundation of China(No.31430087)the Application Technology Research and Development Fund of Harbin(no.2014AB3AN058)+1 种基金the Special Fund for Scientific and Technological Innovative Talents of Harbin(No.2014RFQYJ129)the Modern Agro-industry Technology Research System of China(No.nycytx-42-G3-01)~~
文摘[Objective] Infectious bursal disease (IBD) is a highly contagious immuno- suppressive disease caused by infectious bursal disease virus (IBDV). IBDV is ge- netically prone to mutation, which results in challenges to the disease prevention and control. Thus, it is necessary to continuously monitor the prevalence of IBDV. [Method] 36 IBDVs were identified from ten provinces in China from 2009 to 2012. Partial fragments of VP2, including the hypervariable region (HVR), from new iso- lates were sequenced and analyzed through comparisons with published sequences of IBDV, including 18 strains isolated previously by our lab and 24 reference strains from China and around the world. [Result] Phylogenetic analysis showed a co-exis- tence of IBDV strains belonging to classic, variant, attenuated, and very virulent IB- DV (wlBDV) in China. wlBDVs remain the predominant strains in China and the new subgroup was emerging. Alignment analysis revealed several distinct amino acid mutations that might be involved in virulence or antigenicity variation. [Conclu- sion] The results offered evolutionary clues showing the emerging trend of obvious variations and diversity of IBDV in major poultry-producing regions of China particu- larly in recent years. These findings will contribute to a better understanding of the genetic evolution of IBDV.
基金Supported by the China Agricultural Research System(CARS-07-13.5-A3)the Special Financial Fund of Hebei(F16R03)~~
文摘Heterosis plays an important role in the development of new crop varieties with high-yielding, good-quality and biotic/abiotic stresses while male sterile line de- velopment is the key step to determine the success of heterosis utilization. A male sterile mutant, M207A was created in proso millet (Panicum mi/iaceurn, 2n=4x=36) for the first time using 60Co-y ray mutagenesis. Fertility identification and genetic analysis were carried out to characterize the mutant for its possible use for hetero- sis utilization in proso millet. First the sterility was investigated using both field sur- vey and indoor pollen microscopy identification. Then Pollinated by normal fertile proso millet cultivars, F1 and F2 populations from the mutant were obtained. Mean- while primary genetic analysis was also conducted using above populations in dif- ferent experimental sites, seasons and years. The results showed that the male sterile plant exhibited closed glumes, browning and dry anthers with few normal pollens. The sterility was stable and sterility rate was above 95% on average. The segregation ratio of fertile to sterile plants was 35:1 in the fertile selfing F2 popula- tion indicating that the mutant was a genic male sterility belonging to a pollen-less type controlled by a single recessive gene. The creation of the mutant, M207A can play a key role for heterosis utilization in proso millet.
基金Supported by the National Natural Science Foundation of China(No.31672648)the Jiangsu Collaborative Innovation Center of Regional Modern Agriculture&Environmental Protection and Huaiyin Normal University(No.HSXT2-107)the Science&Technology Program of Huaiyin Normal University(No.31WH000)。
文摘The red swamp crayfish,Procambarus clarkii,is an economically important species especially in China.Their exoskeleton places serious constraints on growth and culture management.Their growth is achieved through intermittent molting/ecdysis.The longitudinal genetic dynamics for growth-related traits at different ecdysial points in P.clarkii has been unclear to date.In this study,conditional genetic analysis was carried out for growth-related traits(body weight,body length,chela length,and cephalothorax length)based upon a mixed genetic model with conditional additive,dominance,and genotype by environment effects in P.clarkii.A complete diallel cross was made among three geographic populations of P.clarkii for the genetic mating design.Results of the conditional genetic analysis showed that from 4 th molt to 9 th molt the conditional additive variations were increased significantly whereas the conditional non-additive genetic variations(dominance and genotype by environment interaction)were decreased significantly for these growth-related traits.This indicated that lots of new expression of additive effect genes for body weight,body length,chela length,and cephalothorax length occurred during ontogeny,and environment played a signifi cant role in the expression of genes affecting these growth-related traits.Growth of the four traits was mainly affected by non-additive genetic effects in early developmental stage(prior to 4 th molt).The cumulative conditional additive variation for the growth-related traits from 4 th molt to 9 th molt accounted for a large majority of the total conditional additive variations from 2 nd molt to 9 th molt,indicating that this period was very important for the growth of this species.Using the conditional analysis method,dynamics of growth-related traits during an important ontogenetic phase of red swamp crayfish was uncovered.Our results provide valuable insights into refining production of this species.
基金supported by the Earmarked Fund for Modern Agro-Industry Technology Research System, China (nyhyzx07-053)the Program for Changjiang Scholars and Innovative Research Team in University, China (PCSIRT)the Research Fund for the Doctoral Program of Higher Education of China (20090097120023)
文摘Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).
文摘A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chill(t).
基金the Crop Breeding Program of Sichuan Province (Grant No. 2006YZGG01)Pre-grant from Youth Science & Technology Foundation of Sichuan Province (Grant No. 07ZQ026-126)
文摘To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed.
文摘One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like H1N1, NS from classical swine H1N1, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine.
基金supported by the Program for the Agricultural Science and Technology Innovation of Hubei Province, China (Grant No. 2007-620-001-03)
文摘A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.
文摘A multi-glume (mg) mutant was obtained by screening the T-DNA inserted mutant pool. Anatomical observation revealed that the florets of the mutant showed elongated leafy paleas/lemmas and palea/lemma-like structures, just like multi-glumes. Among the 215 observed florets of the mutant, 14.27% were failed to produce pistil and stamens, 23.72% showed extra floret generated on the same rachilla, while 62.01% consisted of one to nine stamens and one to three pistils in a single floret. On the other hand, in some cases the transparent bulged vesile-like tissue could be observed at the basis of filament. The mutant showed glumaceous Iodicules, which prevented the florets from opening in natural conditions, while the absolute male and female sterility was an obvious character of the current mutant. Observation on the process of floral organ morphogenesis by a scanning electron microscopy (SEM) indicated that no phenotype difference in floret primordia was found between the wild-type and the mutant. Meanwhile, for the mutant, the beginning of stamen and pistil primordial differentiation was later than the wild type and the palea/lemma-like structure continued to differentiate after the formation of normal palea and lemma. Furthermore, in the mutant the asymmetrical division of floral primordial caused variation in the number of stamens and pistils. Therefore, the genetic analyses indicated that the mutation phenotype was a recessive trait controlled by a single gene and co-segregated with the T-DNA. Based on the phenotypic characteristics, it could be deduced that the mutant was the result of homeotic conversion from the function of the class E genes in ABCD model.
基金the National Natural Science Foundation of China(30260061 , 39930110)the National Key Basic Research Special Foundat ion of China(G1998010205) the"863"Wheat Breeding Project(2001AA241031).
文摘A hundred winter wheat and 41 spring wheat cultivars and advanced lines were used to investigate the distribution of grain hardness in Chinese wheats and correlations between grain hardness and other kernel traits. P1, P2, F1 , F2 and F3 from three crosses, i. e. , Liken2/Yumai2, 85Zhong33/Wenmai6 and 85Zhong33/95Zhong459 were sown to study the genetics of grain hardness. Significant correlation was observed between hardness measured by Single Kernel Characteristic System 4100 (SKCS 4100) and Near Infrared (NIR) Spectroscopy, r ranging from 0.85 to 0.94. Chinese wheat is a mixed population in terms of hardness, ranging from very soft to very hard. For autumn-sown wheat, on average, grain hardness decreases from north to south and spring-sown wheat is dominant with hard type. Hardness is negatively associated with flour color, and its associations with flour yield and ash content differ in winter and spring wheats. Grain hardness is controlled by a major gene and several minor genes with additive effect mostly, but dominant effect is also observed, with heritability of 0.78.
基金supported by the National Transgenic Projects of China(2009ZX-08009-109B)the Natural Science Foundation of Fujian Province, China(2012J01091)the New Century Excellent Talents in University of Fujian Province, China(KY0010057)
文摘A mutant was isolated from the M2 of 60Co-T ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as espl (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA~ did not rescue the panicle enclosure. Using an F2 and a BC, population of the cross between espl and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of-260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
文摘Enterovirus 71 (EV71) is a member of the Entero-virus genus of the Picomaviridae family and is the major cause of Hand, foot, and mouth disease (HFMD) in children. Different strains from Gansu were cloned and the P1 protein was sequenced and analysed. Results indicate that there are three kinds of EV71 infections prevalent in Gansu. The VP 1 protein from one of these strains, 55F, was expressed. The recombinant protein was expressed with high level and reacted specifically with the EV71 patient antibody, the recombinant protein was also applied to raise antiserum in rabbits and after the fourth injection a high titer of antiserum was detected by ELISA assay. These data are useful for further clarification of prevalent EV71 strains in the north of China at the molecular level and provide a basis for EV71 diagnosis.
基金supported by the Shanghai Municipal Education Commission of China (Grant No. 06ZZ21)Shanghai Municipal Science and Technology Commission of China (Grant Nos. 06PJ14074, 075405117 and 08PJ14085)the 948 Program from Ministry of Agriculture, China (Grant No. 2006-G1)
文摘The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 )Jmol/(m^2·s), then turned dark-red at the light intensity of 180 pmol/(m^2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsrgene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsrgene in rice.
基金Special Foundation for "12th Five-year" Biological Germplasm Resources Innovation&Functional Gene Discovery and Utilization of Xinjiang Production and Construction Corps(No.2012BB047)"12th Five-year" Breeding Tacking Program of Xinjiang Production and Construction Corps(No.2011BA002)
文摘In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines, in this study, wheat varieties 18A, 18B and 99AR144-1 were used as experimental materials to establish F2 fertility-segregating population. Plant quantitative trait "major gene + polygene mixed mo- del" separation analysis method and simple sequence repeat (SSR) molecular markers were adopted for genetic analysis of four generations, including the parents (P~ and P2), and hybrid (G and G) populations. The results show that AL-type fertility restoring gene is controlled by two pairs of additive-dominant-epistatic genes and addi- tive-dominant polygene; two primers linked to fertility restoring genes were selected by SSR molecular markers, including Xgwm95 on chromosome 2A and Barc61 on chromosome 1B, with the linkage distance of 15.0 cM and 18.0 cM, respectively. Based on verification, these two markers are reliable for distinguishing AL-type wheat ste- rile lines and restorer lines.
基金supported by the grants from the National High Technology Research and Development Program of China(Grant No.2011AA10A101)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y12C13003)the National Natural Science Foundation of China(Grant No.31201193)
文摘A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.
基金China Natural Science Foundation(30001037) Youth Foundation of Sichuan Province,China.
文摘The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice varieties. The genetic analysis was based on the stable lines in F2 population. The stable lines may appear from some combinations of EGS rice crossing with each other and EGS rice crossing with conventional varieties at different frequencies, but stable lines didn't appear in conventional varieties crossing with conventional varieties. Genetic analysis results indicated that the EGS phenomena should just exist in special rice materials, and the frequency of stable lines was closely related to the EGS traits of parents. The EGS traits were neither qualitative nor quantitative traits, and they were controlled by neither dominant genes nor recessive genes. The EGS traits might be inherited by F1 single plant, and the traits of F3 and F4 were corresponded to those of F2 population, i.e. F3 and F4 lines derived from non-segregating F2 showed uniform agronomic traits, and those from segregating F2.did not. The agronomic traits of EGS lines were consistent with those of F1 single plant. On the other hand, when EGS lines occurred, the segregating lines in Mendelian manner were also observed in all F2 population of the same combination. It was suggested that the reason why the stable strains occurred might be a special factor to control (open/close) gene at the beginning of cell division in zygote, resulting in closing mitosis and opening somatic reduction. The somatic reduction of zygote resulted in recombination and homozygosity forming in F1 single plant, and some lines with uniform agronomic traits were observed in some lines of F2 population.