Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these chang...The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.展开更多
The East China coastal plain is one of the most important Neolithic culture areas in China, where rich archaeological sites including those producing the earliest domesticated rice are observed. It is also a place whe...The East China coastal plain is one of the most important Neolithic culture areas in China, where rich archaeological sites including those producing the earliest domesticated rice are observed. It is also a place where landscape has experienced dramatic evolution during the Holocene when both sea level and climate changed, such that it is an ideal place for studying human-environment interaction. This study investigated over 2000 sites of pre-history and Shang and Zhou Dynasties, with 655 of which being Neolithic ages, by using DEM and GIS methods. The results suggest that the spatial and temporal distribution of Neolithic sites has largely been controlled by landscape evolution(particularly changes in coastal line), which ultimately governed by sea level changes. During early Holocene, Neolithic sites sparsely distributed in the intermountain basins of east Zhejiang Province, far from the influence of ocean. Over the period of 9–7 ka, the coastal plain(including the shelf) was largely submerged,only the feet of low hills to the south and southwest of the study area, and islands protruding the estuary, cradled limited number of settlements with characteristic "maritime components". At about 7 ka, sea level rise decelerated prominently, while sediments supply in the drainage remained high value, the combination of which led to land formation and propagation. Vast space during this period facilitated the growth of settlements in both size and number. In the mean time, however, the coastal plain was vulnerable to extreme environmental events such as storms and flooding owning to its geomorphic nature, which exerted great influence on the rise and fall of Neolithic culture.展开更多
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exp...The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200 360 Ma. This indicates that the Paleogcne alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380-450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northem Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.展开更多
In this paper, sediment samples were collected along the Wanquan beaches and sieved in the laboratory in order to obtain the grain size distributions and associated parameters, i.e. mean grain size, sorting coefficien...In this paper, sediment samples were collected along the Wanquan beaches and sieved in the laboratory in order to obtain the grain size distributions and associated parameters, i.e. mean grain size, sorting coefficient and skewness. Furthermore, we have calculated the longshore drift sediment transport rates and equilibrium cross-sectional areas of the entrance channel by using the method of sedimentary dynamics. The results indicate that the longshore drift sediment transport is dominated by waves with a direction from south to north, which result in rapid changes of the entrance channel. Therefore, some suggestions were proposed for improving the water quality and restoring the ecosystem of estuary. The engineering method includes increasing the sea-route of entrance channel, tidal prism and water exchanges in Shamei Lagoon.展开更多
Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In ...Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In the present study, twenty eight fourth order sub-basins of W. Mujib-Wala (Southern Jordan) were selected, and hypsometric analysis was carried out using 30 m ASTER DEM. Elevation-relief ratio method was employed to calculate the hypsometric integral values within GIS environment. The hypsometric integral values range from 0.71 to 0.88, whereas, the hypsometric curves exhibit remarkably upward convex shapes which indicate that all sub-basins and the W. Mujib-Wala watershed are at the youth-age stage of geomorphic development. Thus, they are of high susceptibility to erosion, incised channel erosion and mass movement activity. Marginal differences exist in mass removal from the watershed and the 28 sub-basins are attributed to variation in tectonic effect, lithology and rejuvenation processes. The relation between basin area and hypsometric integral was examined using regression analysis. Results reveal that negative and weak relationships dominate, where r<sup>2</sup> ranges from 0.05 to 0.478 which confirm with other results reported elsewhere. Indirect assessment of erosion status based on hypsometric integral values was validated using estimated sediment yield information related to wadi Mujib and wadi Wala watersheds separately. The recorded sediment yields were in affirmation with high hypsometric integrals values, where higher values of hypsometric integrals and sediment yields occurred in the western part of the W. Mujib-Wala watershed. These findings would help in the construction of appropriate soil and water conservation measures across the watershed and its sub-basins to control soil erosion, to conserve water, and to reduce sediment discharge into the W. Mujib and W. Wala reservoirs.展开更多
Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a prior...Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a priority in hazard assessment and mitigation.In this context,the sediment Connectivity Index(IC)enables to analyse the existing linkage between sediment sources and the selected target(channel network or catchment outlet).The IC is a grid-based index that allows fast computation of sediment connectivity based on landscape information derived from a single Digital Terrain Model(DTM).The index computation is based on the log-ratio between an upslope and a downslope component,including information about drainage area,slope,terrain roughness,and distance to the analysis target(e.g.outlet).The output is a map that highlights the degree of structural connectivity of sediment pathways over analysed catchments.Until now,these maps are however rarely used to help defining debris-flow hazard maps,notably due to a lack of guidelines to interpret the IC spatial distribution.This paper proposes an exploitation procedure along profiles to extract more information from the analysis of mapped IC values.The methodology relies on the analysis of the IC and its component variables along the main channel profile,integrated with information about sediment budgeting derived from Difference of DEMs(DoD).The study of connectivity was applied in the unmanaged sub-catchment(without torrent control works)of the Rio Soial(Autonomous Province of Trento–NE Italy)to understanding the geomorphic evolution of the area after five debris flows(in ten years)and the related changes of sediment connectivity.Using a recent DTM as validation,we demonstrated how an IC analysis over the older DTM can help predicting geomorphic changes and associated hazards.The results show an IC aptitude to capture geomorphic trajectories,anticipate debris flow deposits in a specific channel location,and depict preferential routing pathways.展开更多
This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, a...This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal fiats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, large- scale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.展开更多
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
基金supported by National Natural Science Foundation of China (Grant No. 40730104)Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q1-15 and KZCX2-YW-117)
文摘The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.
基金supported by the National Basic Research Program of China (Grant No. 2015CB953803)the National Natural Science Foundation of China (Grant No. 41672344)the CAS Strategic Priority Research Program (Grant No. XDB03020301)
文摘The East China coastal plain is one of the most important Neolithic culture areas in China, where rich archaeological sites including those producing the earliest domesticated rice are observed. It is also a place where landscape has experienced dramatic evolution during the Holocene when both sea level and climate changed, such that it is an ideal place for studying human-environment interaction. This study investigated over 2000 sites of pre-history and Shang and Zhou Dynasties, with 655 of which being Neolithic ages, by using DEM and GIS methods. The results suggest that the spatial and temporal distribution of Neolithic sites has largely been controlled by landscape evolution(particularly changes in coastal line), which ultimately governed by sea level changes. During early Holocene, Neolithic sites sparsely distributed in the intermountain basins of east Zhejiang Province, far from the influence of ocean. Over the period of 9–7 ka, the coastal plain(including the shelf) was largely submerged,only the feet of low hills to the south and southwest of the study area, and islands protruding the estuary, cradled limited number of settlements with characteristic "maritime components". At about 7 ka, sea level rise decelerated prominently, while sediments supply in the drainage remained high value, the combination of which led to land formation and propagation. Vast space during this period facilitated the growth of settlements in both size and number. In the mean time, however, the coastal plain was vulnerable to extreme environmental events such as storms and flooding owning to its geomorphic nature, which exerted great influence on the rise and fall of Neolithic culture.
基金supported by National Natural Science Foundation of China(Grant Nos. 41572339,41002051 & 41322013)Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No. CUG160217)
文摘The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200 360 Ma. This indicates that the Paleogcne alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380-450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northem Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.
基金National Natural Science Foundation of China No.40106009+1 种基金 Major State Basic Research Development Program of China No.2002CB412401
文摘In this paper, sediment samples were collected along the Wanquan beaches and sieved in the laboratory in order to obtain the grain size distributions and associated parameters, i.e. mean grain size, sorting coefficient and skewness. Furthermore, we have calculated the longshore drift sediment transport rates and equilibrium cross-sectional areas of the entrance channel by using the method of sedimentary dynamics. The results indicate that the longshore drift sediment transport is dominated by waves with a direction from south to north, which result in rapid changes of the entrance channel. Therefore, some suggestions were proposed for improving the water quality and restoring the ecosystem of estuary. The engineering method includes increasing the sea-route of entrance channel, tidal prism and water exchanges in Shamei Lagoon.
文摘Hypsometric analysis is considered an effective tool for understanding the stages of geomorphic evolution and geological development of river catchment, and for the delineation of erosional proneness of watershed. In the present study, twenty eight fourth order sub-basins of W. Mujib-Wala (Southern Jordan) were selected, and hypsometric analysis was carried out using 30 m ASTER DEM. Elevation-relief ratio method was employed to calculate the hypsometric integral values within GIS environment. The hypsometric integral values range from 0.71 to 0.88, whereas, the hypsometric curves exhibit remarkably upward convex shapes which indicate that all sub-basins and the W. Mujib-Wala watershed are at the youth-age stage of geomorphic development. Thus, they are of high susceptibility to erosion, incised channel erosion and mass movement activity. Marginal differences exist in mass removal from the watershed and the 28 sub-basins are attributed to variation in tectonic effect, lithology and rejuvenation processes. The relation between basin area and hypsometric integral was examined using regression analysis. Results reveal that negative and weak relationships dominate, where r<sup>2</sup> ranges from 0.05 to 0.478 which confirm with other results reported elsewhere. Indirect assessment of erosion status based on hypsometric integral values was validated using estimated sediment yield information related to wadi Mujib and wadi Wala watersheds separately. The recorded sediment yields were in affirmation with high hypsometric integrals values, where higher values of hypsometric integrals and sediment yields occurred in the western part of the W. Mujib-Wala watershed. These findings would help in the construction of appropriate soil and water conservation measures across the watershed and its sub-basins to control soil erosion, to conserve water, and to reduce sediment discharge into the W. Mujib and W. Wala reservoirs.
文摘Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a priority in hazard assessment and mitigation.In this context,the sediment Connectivity Index(IC)enables to analyse the existing linkage between sediment sources and the selected target(channel network or catchment outlet).The IC is a grid-based index that allows fast computation of sediment connectivity based on landscape information derived from a single Digital Terrain Model(DTM).The index computation is based on the log-ratio between an upslope and a downslope component,including information about drainage area,slope,terrain roughness,and distance to the analysis target(e.g.outlet).The output is a map that highlights the degree of structural connectivity of sediment pathways over analysed catchments.Until now,these maps are however rarely used to help defining debris-flow hazard maps,notably due to a lack of guidelines to interpret the IC spatial distribution.This paper proposes an exploitation procedure along profiles to extract more information from the analysis of mapped IC values.The methodology relies on the analysis of the IC and its component variables along the main channel profile,integrated with information about sediment budgeting derived from Difference of DEMs(DoD).The study of connectivity was applied in the unmanaged sub-catchment(without torrent control works)of the Rio Soial(Autonomous Province of Trento–NE Italy)to understanding the geomorphic evolution of the area after five debris flows(in ten years)and the related changes of sediment connectivity.Using a recent DTM as validation,we demonstrated how an IC analysis over the older DTM can help predicting geomorphic changes and associated hazards.The results show an IC aptitude to capture geomorphic trajectories,anticipate debris flow deposits in a specific channel location,and depict preferential routing pathways.
文摘This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal fiats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, large- scale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.