Erigerontis Herba(EH),the dried whole plant of Erigeron breviscapus,is well-known for circulating blood,activating meridians to alleviate pain,expelling wind,and clearing away cold.It has been extensively utilized in ...Erigerontis Herba(EH),the dried whole plant of Erigeron breviscapus,is well-known for circulating blood,activating meridians to alleviate pain,expelling wind,and clearing away cold.It has been extensively utilized in southern China for the treatment of stroke hemiplegia,chest stuffiness and pains,rheumatic arthralgia,headache,and toothache.This review focuses on the botany,ethnopharmacology,phytochemistry,pharmacology and toxicity of EH and its related prescriptions to offer new insights for prospective research of EH.Relevant information about EH was retrieved from ancient records and books,PubMed,China National Knowledge Infrastructure,Chinese Pharmacopoeia,Web of Science,Doctoral and Master’s Theses,and various electronic databases.EH is a member of Compositae family and is mainly grown in southern China.Traditional Chinese medicine records that EH has the effects of circulating blood and removing blood stasis,expelling wind,and removing cold,as well as relieving rigidity of muscle and relieving pain.By now,nearly 200 ingredients have been characterized from EH,including flavonoids,caffeoyls,aromatic acids,coumarins,pentacyclic terpenoids,volatile oil and other compounds.EH extracts,EH related prescriptions(Dengzhan Xixin injection,Dengzhan Shengmai capsules,etc.)or compounds(scutellarin,scutellarein,etc.)possessed obvious therapeutic effects of ischemic stroke,cerebral hemorrhage,myocardial infarction,Alzheimer’s disease,diabetes and its complications,gastric cancer,bone,and joint degenerative diseases.Scutellarin,the major active compound of EH,has been used as a quality marker.And no obvious toxicity of EH has been reported.According to its traditional applications,ethnopharmacology,phytochemistry,pharmacology,and toxicity,EH was applied as a valuable herb for clinical application in food and medicine fields.While several compounds have been shown to possess diverse biological activities,the underlying mechanisms of their actions remain elusive.To fully exploit the medicinal potential of EH,further studies on understanding the effective material basis and mechanisms are warranted.展开更多
Panax Ginseng has been used for thousands of years in traditional Chinese medicine(TCM)as a tonic to improver stamina and vitality.Ginsenoside Rg1(Rg1),a saponin extracted from Panax ginseng,is considered one of the m...Panax Ginseng has been used for thousands of years in traditional Chinese medicine(TCM)as a tonic to improver stamina and vitality.Ginsenoside Rg1(Rg1),a saponin extracted from Panax ginseng,is considered one of the most potent pharmacological candidates among TCM.In various diseases related to nervous system,Rg1 has shown excellent pharmacological activities.①Stroke:Rg1 has been well documented to be effective against ischemic/reperfusion(I/R)neuronal injury.A systematic review and meta-analysis revealed a marked efficacy of Rg1 in experi⁃mental acute ischemic stroke,as manifested by its ability to reduce infract volume and improve neurological score.The protective effects of Rg1 were abolished by injecting of AAV-HIF-miR-144-shRNA into the predicted ischemic penumbra.②Depression:In addition,Rg1 showed antidepressive effects in chronic unpredictable mild stress(CUMS)model of depression and in gonadectomized(GDX)model of neuroendocrine disturbance.Rg1 displayed antidepressant activity through the modulation of HPA and HPG axis,markedly alleviated depression-like behavior in rats.Long-term Rg1 treat⁃ment of CUS-exposed rats also significantly prevented the decrease in dye diffusion and improved the ultrastructure of astrocyte gap junctions in the PFC.Rg1 upregulated Cx43 expression in PFC reduced by CUS exposure,indicating beneficial effects on the functional activity of gap junction channels in the brain.③Parkinson disease(PD):Oral treatment with Rg1 significantly attenuated high MPTP-induced mortality,behavior defects,loss of dopamine neurons and abnormal unltrastructure changes in SNpc.It regulated MPTP-induced reactive astrocytes and microglia and decreased the release of cytokines such as TNF-alpha and IL-1βin SNpc.Rg1 also alleviated the unusual MPTP-induced increase in oligomeric,phosphorylated and disease-relatedα-synuclein in SNpc.④Alzheimer disease(AD):Okadaic acid(OKA)intracerebroventricular injection induced memory impairment,including changes in the ability of orientation navigate,spatial probe and relearning memory in behavioral test of Morris water maze(MWM).OKA treated rats showed memory impair⁃ment including increasing of phospho-tau,decreasing of phospho-GSK3βand the formation ofβ-amyloid in special brain regions,which were reversed by Rg1.The possible neuroprotective mechanism might be that Rg1 decreases OKAinduced memory impairment through GSK3β/tau signaling pathway and/or attenuating Aβformation.Meanwhile,Rg1 activated ERK/MAPK pathway by CaMKIIα,and the activation of CREB was not only dependent on ERK induced by Rg1.Additionally,Rg1 inhibited microglial activation by suppressing Iba1 expression.Rg1 inhibited the inflammation mediated by LPS through suppressing NF-κB and MAPK pathway,which provided the explanation for its therapeutic ef⁃fect on neurodegenerative diseases.展开更多
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefo...The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.展开更多
Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activ...Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activation.However,the potential role of GRb1 in mediating HSC ferroptosis remains unclear.This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro,using CCl4-induced liver fibrosis mouse model and primary HSCs,LX-2 cells.The findings revealed that GRb1 effectively inactivated HSCs in vitro,reducing alpha-smooth muscle actin(a-SMA)and type I collagen(Col1A1)levels.Moreover,GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo.From a mechanistic standpoint,the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1.Specifically,GRb1 promoted HSC ferroptosis both in vivo and in vitro,characterized by increased glutathione depletion,malondialdehyde production,iron overload,and accumulation of reactive oxygen species(ROS).Intriguingly,GRb1 increased Beclin 1(BECN1)levels and decreased the System Xc-key subunit SLC7A11.Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1.Moreover,BECN1 could directly interact with SLC7A11,initiating HSC ferroptosis.In conclusion,the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro.Overall,this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation,at least partly through its modulation of BECN1 and SLC7A11.展开更多
BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,...BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress.展开更多
BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine t...BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.展开更多
Ginsenoside Rb3(G-Rb3)is one of the primary active compounds isolated from Panax ginseng Meyer,which belongs to protopanaxadiol ginsenosides(PPD).Based on the structure-activity relationship(SAR)of ginsenosides,the pe...Ginsenoside Rb3(G-Rb3)is one of the primary active compounds isolated from Panax ginseng Meyer,which belongs to protopanaxadiol ginsenosides(PPD).Based on the structure-activity relationship(SAR)of ginsenosides,the pentose structure of G-Rb3 limited itself to possess more pharmacological activity to a certain extent.However,pharmacokinetics show that G-Rb3 is processed through deglycosylation in the intestinal tract and converted into more active rare saponins,such as Compound K,F2,etc.A series of studies focused on neuroprotection and the cardiovascular system demonstrating its therapeutic potentials,which was achieved by diminishing oxidative stress and apoptosis.Therefore,more systematic and in-depth studies are needed to complete the pharmaceutical value and to promote its clinical applications.This article highlights the multiple pharmacological effects and mechanisms of G-Rb3 and prospects for its development.展开更多
Ginseng is a traditional Chinese medicine with a long medicinal history.Ginsenoside is the main compo⁃nent of ginseng,among which the ginsenoside-Rg3 possess higher medicinal value.The pharmacological studies reported...Ginseng is a traditional Chinese medicine with a long medicinal history.Ginsenoside is the main compo⁃nent of ginseng,among which the ginsenoside-Rg3 possess higher medicinal value.The pharmacological studies reported that the ginsenoside-Rg3 exhibit a variety of pharmacological actions.For example,the ginsenoside-Rg3 exhibit an effective inhibitory effect against cancer and induce apoptosis,such as glioma,lung cancer,liver cancer,breast cancer,ovarian cancer,cervical cancer and so on.The anti-cancer effect will be significantly increased by combinning chemotherapy drugs with ginsenoside-Rg3.In addition,ginsenoside-Rg3 can reduce the side effects of chemotherapy drugs,such as cardiotoxicity and nephrotoxicity.Furthermore,ginsenoside-Rg3 could reverse the multidrug resistance of cancer cells against anticancer drugs.What′s more,ginsenoid-Rg3 has several other pharmacological actions as follows.At first,ginsenoid-Rg3 appears to anti-fatigue effect by reversing the dopamine reduction induced by fatigue.Secondly,ginsenoid-Rg3 can reverse chemical-induced memory damage and improve memory to exert neuroprotective effect.Finally,ginsenoid-Rg3 can improve mitochondrial function and insulin tolerance in skeletal muscle,suggesting that ginsenoid-Rg3 can be used as a hypoglycemic drug.In this review,I present an overview of the pharmacological actions of ginsenoside-Rg3 to provide theoretical guidance for further development and utilization of ginsenoside-Rg3.展开更多
Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from ...Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from neonatal mouse brain were used.Astrocyte injury was induced via oxygen-glucose deprivation/re-oxygenation(OGD/R).Cell morphology,viability,lactate dehydrogenase(LDH)leakage,apoptosis,glutamate uptake,and brain-derived neurotrophic factor(BDNF)secretion were assessed to gauge cell survival and functionality.Western blot was used to investigate the cyclic adenosine monophosphate(cAMP)and protein kinase B(Akt)signaling pathways.GPCR-G_(s)-specific inhibitors and molecular docking were used to identify target receptors.Results:Rb1 at concentrations ranging from 0.8 to 5μM did not significantly affect the viability,glutamate uptake,or BDNF secretion in normal astrocytes.OGD/R reduced astrocyte viability,increasing their LDH leakage and apoptosis rate.It also decreased glutamate uptake and BDNF secretion by these cells.Rb1 had protective effects of astrocytes challenged by OGD/R,by improving viability,reducing apoptosis,and enhancing glutamate uptake and BDNF secretion.Additionally,Rb1 activated the cAMP and Akt pathways in these cells.When the GPCR-G_(s) inhibitor NF449 was introduced,the protective effects of Rb1 completely disappeared,and its activation of cAMP and Akt signaling pathways was significantly inhibited.Conclusion:Rb1 protects against astrocytes from OGD/R-induced injury through GPCR-G_(s) mediation.展开更多
In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cas...In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.展开更多
Background:Global efforts to discover effective therapeutic agents for combating coronavirus disease 19(COVID-19)have intensified the exploration of natural compounds with potential antiviral properties.In this study,...Background:Global efforts to discover effective therapeutic agents for combating coronavirus disease 19(COVID-19)have intensified the exploration of natural compounds with potential antiviral properties.In this study,we utilized network pharmacology and computational analysis to investigate the antiviral effects of Berberine and Kuwanon Z against severe acute respiratory syndrome coronavirus 2,the viruses responsible for COVID-19.Method:Utilizing comprehensive network pharmacology approaches,we elucidated the complex interactions between these compounds and the host biological system,highlighting their multitarget mechanisms.Network pharmacology identifies COVID-19 targets and compounds through integrated protein‒protein interaction and KEGG pathway analyses.Molecular docking simulation studies were performed to assess the binding affinities and structural interactions of Berberine and Kuwanon Z with key viral proteins,shedding light on their potential inhibitory effects on viral replication and entry.Results:Network-based analyses revealed the modulation of crucial pathways involved in the host antiviral response.Compound-target network analysis revealed complex interactions(122 nodes,121 edges),with significant interactions and an average node degree of 1.37.KEGG analysis revealed pathways such as the COVID-19 pathway,chemokines and Jak-sat in COVID-19.Docking studies revealed that Kuwanon Z had binding energies of-10.5 kcal/mol for JAK2 and-8.1 kcal/mol for the main protease.Conclusion:The findings of this study contribute to the understanding of the pharmacological actions of Berberine and Kuwanon Z in the context of COVID-19,providing a basis for further experimental validation.These natural compounds exhibit promise as potential antiviral agents,offering a foundation for the development of novel therapeutic strategies in the ongoing battle against the global pandemic.展开更多
Objective:In this study,we aim to enhance the anti-prostate cancer efficacy of cabazitaxel(CTX)and reduce its immunosuppression and systemic toxicity by developing CTX-loaded liposomes modified with ginsenoside Rk1(Rk...Objective:In this study,we aim to enhance the anti-prostate cancer efficacy of cabazitaxel(CTX)and reduce its immunosuppression and systemic toxicity by developing CTX-loaded liposomes modified with ginsenoside Rk1(Rk1/CTX-Lip).Methods:Physical and chemical properties of Rk1/CTX-Lip were investigated.We evaluated the biological functions of Rk1/CTXLip,both in vitro and in vivo.A subcutaneous prostate cancer(RM-1)-bearing mouse model was established to study the efficacy of Rk1/CTX-Lip inhibition in tumors.Simultaneously,a Candida albicans infection model was established in tumor-bearing mice to study the infection-relieving efficacy of Rk1/CTX-Lip.Finally,biocompatibility and in vivo safety of Rk1/CTX-Lip were evaluated.Results:We successfully prepared Rk1/CTX-Lip,achieving high CTX encapsulation efficiency(97.24±0.75)%and physical stability.Rk1/CTX-Lip demonstrated evasion of macrophage phagocytosis,effective tumor tissue targeting,and a significant reduction(>50%)in average tumor volume compared with Chol/CTX-Lip.Moreover,it relieved the concurrent infection burden and effectively regulated immune organs and cells,demonstrating superior biocompatibility.Conclusion:Rk1/CTX-Lip presents a promising new therapy for prostate cancer and holds potential for relieving concurrent fungal infections in cancer patients with low immunity.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
Background: Celastrol is an active ingredient extracted from Traditional Chinese Medicine (TCM), which can restrain the progression of lung cancer, whereas its underlying mechanism is unclear. In our study, the underl...Background: Celastrol is an active ingredient extracted from Traditional Chinese Medicine (TCM), which can restrain the progression of lung cancer, whereas its underlying mechanism is unclear. In our study, the underlying mechanism of celastrol in the treatment of lung adenocarcinoma (LUAD) with metastasis was investigated by network pharmacology and molecular docking. Method: Potential targets of celastrol were collected from TCMSP, Batman-TCM and GeneCard database, and its potential targets were predicted using the STP platform and the TargetNet server. Metastasis marker genes (MGs) were obtained from the HCMDB. The genes correlated with LUAD were gathered from the GeneCard and OMIM database. And the common targets among celastrol potential targets, MGs and LUAD were analyzed. The protein-protein interaction (PPI) networks were obtained from the STRING database. SangerBox and the Xiantao bioinformatics tool were applied to visualize GO and KEGG analysis. Molecular docking tested the binding affinity between celastrol and core genes. Result: A total of 107 targets of celastrol against metastasis LUAD were obtained. The core targets were obtained from the PPI network, namely AKT1, JUN, MYC, STAT3, IL6, TNF, NFKB1, BCL2, IL1B, and HIF1A. GO and KEGG enrichment analysis indicated celastrol for the treatment of metastasis LUAD most refers to cellular response to chemical stress, DNA-binding transcription factor binding, transcription regulator complex and pathways in cancer. And some of these targets are associated with differential expressions and survival rates in LUAD. Moreover, Molecular docking shows celastrol can bind with BCL2 well by hydrogen bond and hydrophobic interaction. Conclusion: This finding roundly expounded the core genes and potential mechanisms of celastrol for the treatment of metastasis LUAD, offering the theoretical basis and antitumor mechanism of TCM in the treatment of lung cancer.展开更多
BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal ...BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.展开更多
Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but als...Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.展开更多
BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.A...BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.AIM To elucidate the potential mechanisms of curcumin in the treatment of GC.METHODS Network pharmacological approaches were used to perform network analysis of Curcumin.We first analyzed Lipinski’s Rule of Five for the use of Curcumin.Curcumin latent targets were predicted using the PharmMapper,SwissTargetPrediction and DrugBank network databases.GC disease targets were mined through the GeneCard,OMIM,DrugBank and TTD network databases.Then,GO enrichment,KEGG enrichment,protein-protein interaction(PPI),and overall survival analyses were performed.The results were further verified through molecular docking,differential expression analysis and cell experiments.RESULTS We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets.The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways.Following PPI analysis,6 hub targets were identified,namely,estrogen receptor 1(ESR1),epidermal growth factor receptor(EGFR),cytochrome P450 family 3 subfamily A member 4(CYP3A4),mitogen-activated protein kinase 14(MAPK-14),cytochrome P450 family 1 subfamily A member 2(CYP1A2),and cytochrome p450 family 2 subfamily B member 6(CYP2B6).These factors are correlated with decreased survival rates among patients diagnosed with GC.Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes.The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation.mRNA levels of hub targets CYP3A4,MAPK14,CYP1A2,and CYP2B6 in BGC-823 cells were significantly increased in each dose group.CONCLUSION Curcumin can play an anti-GC role through a variety of targets,pathways and biological processes.展开更多
Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum ph...Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology.Methods:The chemical constituents of YSDZ in the blood were examined using ultraperformance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS).Potential protein targets were obtained from the SwissTargetPrediction database,and the target genes associated with viral pneumonia were identified using GeneCards,DisGeNET,and Online Mendelian Inheritance in Man(OMIM)databases.The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1.Protein-protein interaction networks were constructed using the STRING database.The Metascape database was employed to perform enrichment analyses of Gene Ontology(GO)functions and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathways for the targets,while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks.Further,in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia.Results:Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum.Among these,MAPK1,MAPK3,AKT1,EGFR,and TNF play significant roles.In vitro tests revealed that the medicated serum suppressed the replication of H1N1,RSV,and SARS-CoV-2 replicon.Further,in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1.Conclusion:The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.展开更多
[Objectives]To investigate the mechanism of action of glyasperin A(GAA)in intervening menopause using network pharmacology and molecular docking technology.[Methods]All target names of the active ingredients were scre...[Objectives]To investigate the mechanism of action of glyasperin A(GAA)in intervening menopause using network pharmacology and molecular docking technology.[Methods]All target names of the active ingredients were screened using TCMSP,3D model molecules converted into SMILES online tool,Swiss target prediction and literature search.The relevant target genes corresponding to menopause were identified using the Genecards database.Venn 2.1.0 was then used to generate the corresponding Venn diagram.Finally,the protein-protein interaction(PPI)network was constructed using Cytoscape 3.9.1 software.The core targets that were screened underwent enrichment and analysis using the Gene Ontology(GO)biological process and KEGG pathways with the assistance of the DAVID database and bioinformatics.The molecular docking was then verified using AutoDock and Pymol software on the core targets.[Results]This study screened 100 target genes of active ingredients.In the PPI network,ESR1 and AKT1 were found to have a higher degree.The GO and KEGG enrichment analyses revealed that the biological processes primarily involved platelet activation,regulation of circadian rhythms,and regulation of mRNA stability.The signalling pathways included hepatitis B,cytotoxicity,and gastric cancer.The molecular docking results indicated that the key active ingredients and proteins bound well,as evidenced by their small binding energies.[Conclusions]Using a systematic network pharmacology approach,this study predicts the basic pharmacological effects and potential mechanisms of GAA in intervening menopause,which provides a foundation for further research on its pharmacological mechanisms.展开更多
Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome ...Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome Atlas(TCGA)were used to identify differentially expressed genes(DEGs)in BC.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were performed on the DEGs to identify genes involved in protein–protein interactions.Molecular docking was used to explore the dynamic relationship between active molecules and targets.Cell function experiments and animal studies were conducted to evaluate the effects of hub genes and active QZP compounds on BC cell behavior.Results: Among the 25 evaluated BC-related targets of QZP,matrix metalloproteinase-1(MMP1)and epidermal growth factor receptor(EGFR)exhibited the highest degrees of dysregulation.GO and KEGG enrichment analyses revealed that the anti-BC targets of QZP primarily affected drug responses and pathways in cancer cells.Molecular docking analysis suggested potential interactions between EGFR and quercetin/luteolin,as well as between MMP1 and luteolin/kaempferol/quercetin.Quercetin significantly reduced BC cell proliferation,migration,invasion,and tumor development in vivo.Treatment of BC cells with quercetin decreased the expression or activation of several associated proteins.Conclusion: The findings of our study provide new insights into the therapeutic potential of traditional Chinese medicine against BC,with particular reference to QZP.展开更多
基金funded by the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University)(CMEMR2022-B11)the Natural Science Research of Jiangsu Higher education Institution of China(22KJB360018)Jiangsu Province University Student Innovation and Entrepreneurial Training Program(202311117019Z).
文摘Erigerontis Herba(EH),the dried whole plant of Erigeron breviscapus,is well-known for circulating blood,activating meridians to alleviate pain,expelling wind,and clearing away cold.It has been extensively utilized in southern China for the treatment of stroke hemiplegia,chest stuffiness and pains,rheumatic arthralgia,headache,and toothache.This review focuses on the botany,ethnopharmacology,phytochemistry,pharmacology and toxicity of EH and its related prescriptions to offer new insights for prospective research of EH.Relevant information about EH was retrieved from ancient records and books,PubMed,China National Knowledge Infrastructure,Chinese Pharmacopoeia,Web of Science,Doctoral and Master’s Theses,and various electronic databases.EH is a member of Compositae family and is mainly grown in southern China.Traditional Chinese medicine records that EH has the effects of circulating blood and removing blood stasis,expelling wind,and removing cold,as well as relieving rigidity of muscle and relieving pain.By now,nearly 200 ingredients have been characterized from EH,including flavonoids,caffeoyls,aromatic acids,coumarins,pentacyclic terpenoids,volatile oil and other compounds.EH extracts,EH related prescriptions(Dengzhan Xixin injection,Dengzhan Shengmai capsules,etc.)or compounds(scutellarin,scutellarein,etc.)possessed obvious therapeutic effects of ischemic stroke,cerebral hemorrhage,myocardial infarction,Alzheimer’s disease,diabetes and its complications,gastric cancer,bone,and joint degenerative diseases.Scutellarin,the major active compound of EH,has been used as a quality marker.And no obvious toxicity of EH has been reported.According to its traditional applications,ethnopharmacology,phytochemistry,pharmacology,and toxicity,EH was applied as a valuable herb for clinical application in food and medicine fields.While several compounds have been shown to possess diverse biological activities,the underlying mechanisms of their actions remain elusive.To fully exploit the medicinal potential of EH,further studies on understanding the effective material basis and mechanisms are warranted.
基金National Natural Sciences Foundation of China(8187302681473373+4 种基金8173009681603316U1402221);CAMS Innovation Fund for Medical Sciences(CIFMS)(2016-I2M-1-004)PUMC Graduate Education and Teaching Reform Project(10023201600801)
文摘Panax Ginseng has been used for thousands of years in traditional Chinese medicine(TCM)as a tonic to improver stamina and vitality.Ginsenoside Rg1(Rg1),a saponin extracted from Panax ginseng,is considered one of the most potent pharmacological candidates among TCM.In various diseases related to nervous system,Rg1 has shown excellent pharmacological activities.①Stroke:Rg1 has been well documented to be effective against ischemic/reperfusion(I/R)neuronal injury.A systematic review and meta-analysis revealed a marked efficacy of Rg1 in experi⁃mental acute ischemic stroke,as manifested by its ability to reduce infract volume and improve neurological score.The protective effects of Rg1 were abolished by injecting of AAV-HIF-miR-144-shRNA into the predicted ischemic penumbra.②Depression:In addition,Rg1 showed antidepressive effects in chronic unpredictable mild stress(CUMS)model of depression and in gonadectomized(GDX)model of neuroendocrine disturbance.Rg1 displayed antidepressant activity through the modulation of HPA and HPG axis,markedly alleviated depression-like behavior in rats.Long-term Rg1 treat⁃ment of CUS-exposed rats also significantly prevented the decrease in dye diffusion and improved the ultrastructure of astrocyte gap junctions in the PFC.Rg1 upregulated Cx43 expression in PFC reduced by CUS exposure,indicating beneficial effects on the functional activity of gap junction channels in the brain.③Parkinson disease(PD):Oral treatment with Rg1 significantly attenuated high MPTP-induced mortality,behavior defects,loss of dopamine neurons and abnormal unltrastructure changes in SNpc.It regulated MPTP-induced reactive astrocytes and microglia and decreased the release of cytokines such as TNF-alpha and IL-1βin SNpc.Rg1 also alleviated the unusual MPTP-induced increase in oligomeric,phosphorylated and disease-relatedα-synuclein in SNpc.④Alzheimer disease(AD):Okadaic acid(OKA)intracerebroventricular injection induced memory impairment,including changes in the ability of orientation navigate,spatial probe and relearning memory in behavioral test of Morris water maze(MWM).OKA treated rats showed memory impair⁃ment including increasing of phospho-tau,decreasing of phospho-GSK3βand the formation ofβ-amyloid in special brain regions,which were reversed by Rg1.The possible neuroprotective mechanism might be that Rg1 decreases OKAinduced memory impairment through GSK3β/tau signaling pathway and/or attenuating Aβformation.Meanwhile,Rg1 activated ERK/MAPK pathway by CaMKIIα,and the activation of CREB was not only dependent on ERK induced by Rg1.Additionally,Rg1 inhibited microglial activation by suppressing Iba1 expression.Rg1 inhibited the inflammation mediated by LPS through suppressing NF-κB and MAPK pathway,which provided the explanation for its therapeutic ef⁃fect on neurodegenerative diseases.
基金supported by the National Key Research and Development Program,China(Grant Nos.:2021YFC2101500 and 2021YFC2103900)the National Natural Science Foundation of China(Grant Nos.:22278335 and 21978236)the Natural Science Basic Research Program of Shaanxi,China(Grant No.:2023-JC-JQ-17).
文摘The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
基金supported by Wenzhou Municipal Science and technology Bureau,China(Grant No.:Y20220023)the Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province,China(Grant No.:2022E10022)the Project of Wenzhou Medical University Basic Scientific Research,China(Grant No.:KYYW201904).
文摘Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activation.However,the potential role of GRb1 in mediating HSC ferroptosis remains unclear.This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro,using CCl4-induced liver fibrosis mouse model and primary HSCs,LX-2 cells.The findings revealed that GRb1 effectively inactivated HSCs in vitro,reducing alpha-smooth muscle actin(a-SMA)and type I collagen(Col1A1)levels.Moreover,GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo.From a mechanistic standpoint,the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1.Specifically,GRb1 promoted HSC ferroptosis both in vivo and in vitro,characterized by increased glutathione depletion,malondialdehyde production,iron overload,and accumulation of reactive oxygen species(ROS).Intriguingly,GRb1 increased Beclin 1(BECN1)levels and decreased the System Xc-key subunit SLC7A11.Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1.Moreover,BECN1 could directly interact with SLC7A11,initiating HSC ferroptosis.In conclusion,the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro.Overall,this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation,at least partly through its modulation of BECN1 and SLC7A11.
基金supported by the National Natural Science Foundation of China(82172182 and 82102311)Natural Science Foundation of Jiangsu Province(BK20211136)+2 种基金China Postdoctoral Science Foundation(2018M643890 and 2020M683718)Xuzhou Science and Technology Project(KC21215 and KC22136)Development Fund Project of Affiliated Hospital of Xuzhou Medical University(XYFY202232)。
文摘BACKGROUND:Sepsis-related acute respiratory distress syndrome(ARDS)has a high mortality rate,and no effective treatment is available currently.Quercetin is a natural plant product with many pharmacological activities,such as antioxidative,anti-apoptotic,and anti-inflammatory effects.This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS.METHODS:In this study,network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS.Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments.RESULTS:A total of 4,230 targets of quercetin,360 disease targets of sepsis-related ARDS,and 211 intersection targets were obtained via database screening.Among the 211 intersection targets,interleukin-6(IL-6),tumor necrosis factor(TNF),albumin(ALB),AKT serine/threonine kinase 1(AKT1),and interleukin-1β(IL-1β)were identified as the core targets.A Gene Ontology(GO)enrichment analysis revealed 894 genes involved in the inflammatory response,apoptosis regulation,and response to hypoxia.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis identified 106 pathways.After eliminating and generalizing,the hypoxia-inducible factor-1(HIF-1),TNF,nuclear factor-κB(NF-κB),and nucleotide-binding and oligomerization domain(NOD)-like receptor signaling pathways were identified.Molecular docking revealed that quercetin had good binding activity with the core targets.Moreover,quercetin blocked the HIF-1,TNF,NF-κB,and NODlike receptor signaling pathways in lipopolysaccharide(LPS)-induced murine alveolar macrophage(MH-S)cells.It also suppressed the inflammatory response,oxidative reactions,and cell apoptosis.CONCLUSION:Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1,TNF,NF-κB,and NOD-like receptor signaling pathways to reduce inflammation,cell apoptosis,and oxidative stress.
基金West Light Foundation of the Ningxia Key Research and Development Program,No.2023BEG02015High-level Key Discipline Construction Project of State Administration of Traditional Chinese Medicine,No.2022-226+1 种基金Talent Development Projects of Young Qihuang of National Administration of Traditional Chinese Medicine,No.2020-218National Natural Science Foundation of China,No.82374261.
文摘BACKGROUND Cancer is one of the most serious threats to human health worldwide.Conventional treatments such as surgery and chemotherapy are associated with some drawbacks.In recent years,traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians,and has become an indispensable part of the comprehensive treatment for gastric cancer.AIM To investigate the mechanism of Xiaojianzhong decoction(XJZ)in the treatment of gastric cancer(GC)by utilizing network pharmacology and experimental validation,so as to provide a theoretical basis for later experimental research.METHODS We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics.Subsequently,we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8,apoptosis,cell cycle,and clone formation assays.Additionally,we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins.RESULTS XJZ mainly regulates IL6,PTGS2,CCL2,MMP9,MMP2,HMOX1,and other target genes and pathways in cancer to treat GC.The inhibition of cell viability,the increase of apoptosis,the blockage of the cell cycle at the G0/G1 phase,and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment.In addition,XJZ induced a decrease in the mRNA expression of IL6,PTGS2,MMP9,MMP2,and CCL2,and an increase in the mRNA expression of HOMX1.XJZ significantly inhibited the expression of IL6,PTGS2,MMP9,MMP2,and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein.CONCLUSION XJZ exerts therapeutic effects against GC through multiple components,multiple targets,and multiple pathways.Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.
基金This work was funded by the grant of Jilin Science&Technology Development Plan(No.20200301037RQ).
文摘Ginsenoside Rb3(G-Rb3)is one of the primary active compounds isolated from Panax ginseng Meyer,which belongs to protopanaxadiol ginsenosides(PPD).Based on the structure-activity relationship(SAR)of ginsenosides,the pentose structure of G-Rb3 limited itself to possess more pharmacological activity to a certain extent.However,pharmacokinetics show that G-Rb3 is processed through deglycosylation in the intestinal tract and converted into more active rare saponins,such as Compound K,F2,etc.A series of studies focused on neuroprotection and the cardiovascular system demonstrating its therapeutic potentials,which was achieved by diminishing oxidative stress and apoptosis.Therefore,more systematic and in-depth studies are needed to complete the pharmaceutical value and to promote its clinical applications.This article highlights the multiple pharmacological effects and mechanisms of G-Rb3 and prospects for its development.
文摘Ginseng is a traditional Chinese medicine with a long medicinal history.Ginsenoside is the main compo⁃nent of ginseng,among which the ginsenoside-Rg3 possess higher medicinal value.The pharmacological studies reported that the ginsenoside-Rg3 exhibit a variety of pharmacological actions.For example,the ginsenoside-Rg3 exhibit an effective inhibitory effect against cancer and induce apoptosis,such as glioma,lung cancer,liver cancer,breast cancer,ovarian cancer,cervical cancer and so on.The anti-cancer effect will be significantly increased by combinning chemotherapy drugs with ginsenoside-Rg3.In addition,ginsenoside-Rg3 can reduce the side effects of chemotherapy drugs,such as cardiotoxicity and nephrotoxicity.Furthermore,ginsenoside-Rg3 could reverse the multidrug resistance of cancer cells against anticancer drugs.What′s more,ginsenoid-Rg3 has several other pharmacological actions as follows.At first,ginsenoid-Rg3 appears to anti-fatigue effect by reversing the dopamine reduction induced by fatigue.Secondly,ginsenoid-Rg3 can reverse chemical-induced memory damage and improve memory to exert neuroprotective effect.Finally,ginsenoid-Rg3 can improve mitochondrial function and insulin tolerance in skeletal muscle,suggesting that ginsenoid-Rg3 can be used as a hypoglycemic drug.In this review,I present an overview of the pharmacological actions of ginsenoside-Rg3 to provide theoretical guidance for further development and utilization of ginsenoside-Rg3.
基金supported by the grant International Cooperation Project of Prevention and Treatment of Major Diseases with Chinese Medicine(GZYYGJ2021047)the High-end Experts Support Program from the Ministry of Science and Technology(DL 2021110001L)the Basic Research Funds from the Ministry of Education(1000061223731).
文摘Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from neonatal mouse brain were used.Astrocyte injury was induced via oxygen-glucose deprivation/re-oxygenation(OGD/R).Cell morphology,viability,lactate dehydrogenase(LDH)leakage,apoptosis,glutamate uptake,and brain-derived neurotrophic factor(BDNF)secretion were assessed to gauge cell survival and functionality.Western blot was used to investigate the cyclic adenosine monophosphate(cAMP)and protein kinase B(Akt)signaling pathways.GPCR-G_(s)-specific inhibitors and molecular docking were used to identify target receptors.Results:Rb1 at concentrations ranging from 0.8 to 5μM did not significantly affect the viability,glutamate uptake,or BDNF secretion in normal astrocytes.OGD/R reduced astrocyte viability,increasing their LDH leakage and apoptosis rate.It also decreased glutamate uptake and BDNF secretion by these cells.Rb1 had protective effects of astrocytes challenged by OGD/R,by improving viability,reducing apoptosis,and enhancing glutamate uptake and BDNF secretion.Additionally,Rb1 activated the cAMP and Akt pathways in these cells.When the GPCR-G_(s) inhibitor NF449 was introduced,the protective effects of Rb1 completely disappeared,and its activation of cAMP and Akt signaling pathways was significantly inhibited.Conclusion:Rb1 protects against astrocytes from OGD/R-induced injury through GPCR-G_(s) mediation.
文摘In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system.
文摘Background:Global efforts to discover effective therapeutic agents for combating coronavirus disease 19(COVID-19)have intensified the exploration of natural compounds with potential antiviral properties.In this study,we utilized network pharmacology and computational analysis to investigate the antiviral effects of Berberine and Kuwanon Z against severe acute respiratory syndrome coronavirus 2,the viruses responsible for COVID-19.Method:Utilizing comprehensive network pharmacology approaches,we elucidated the complex interactions between these compounds and the host biological system,highlighting their multitarget mechanisms.Network pharmacology identifies COVID-19 targets and compounds through integrated protein‒protein interaction and KEGG pathway analyses.Molecular docking simulation studies were performed to assess the binding affinities and structural interactions of Berberine and Kuwanon Z with key viral proteins,shedding light on their potential inhibitory effects on viral replication and entry.Results:Network-based analyses revealed the modulation of crucial pathways involved in the host antiviral response.Compound-target network analysis revealed complex interactions(122 nodes,121 edges),with significant interactions and an average node degree of 1.37.KEGG analysis revealed pathways such as the COVID-19 pathway,chemokines and Jak-sat in COVID-19.Docking studies revealed that Kuwanon Z had binding energies of-10.5 kcal/mol for JAK2 and-8.1 kcal/mol for the main protease.Conclusion:The findings of this study contribute to the understanding of the pharmacological actions of Berberine and Kuwanon Z in the context of COVID-19,providing a basis for further experimental validation.These natural compounds exhibit promise as potential antiviral agents,offering a foundation for the development of novel therapeutic strategies in the ongoing battle against the global pandemic.
基金supported by the National Natural Science Foundation of China(82373808)Chongqing Natural Science Foundation(cstc2021jcyj-bshX0125)+1 种基金Fundamental Research Funds for the Central Universities(SWURC2020001)the project for Chongqing University Innovation Research Group,Chongqing Education Committee(CXQT20006).
文摘Objective:In this study,we aim to enhance the anti-prostate cancer efficacy of cabazitaxel(CTX)and reduce its immunosuppression and systemic toxicity by developing CTX-loaded liposomes modified with ginsenoside Rk1(Rk1/CTX-Lip).Methods:Physical and chemical properties of Rk1/CTX-Lip were investigated.We evaluated the biological functions of Rk1/CTXLip,both in vitro and in vivo.A subcutaneous prostate cancer(RM-1)-bearing mouse model was established to study the efficacy of Rk1/CTX-Lip inhibition in tumors.Simultaneously,a Candida albicans infection model was established in tumor-bearing mice to study the infection-relieving efficacy of Rk1/CTX-Lip.Finally,biocompatibility and in vivo safety of Rk1/CTX-Lip were evaluated.Results:We successfully prepared Rk1/CTX-Lip,achieving high CTX encapsulation efficiency(97.24±0.75)%and physical stability.Rk1/CTX-Lip demonstrated evasion of macrophage phagocytosis,effective tumor tissue targeting,and a significant reduction(>50%)in average tumor volume compared with Chol/CTX-Lip.Moreover,it relieved the concurrent infection burden and effectively regulated immune organs and cells,demonstrating superior biocompatibility.Conclusion:Rk1/CTX-Lip presents a promising new therapy for prostate cancer and holds potential for relieving concurrent fungal infections in cancer patients with low immunity.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
文摘Background: Celastrol is an active ingredient extracted from Traditional Chinese Medicine (TCM), which can restrain the progression of lung cancer, whereas its underlying mechanism is unclear. In our study, the underlying mechanism of celastrol in the treatment of lung adenocarcinoma (LUAD) with metastasis was investigated by network pharmacology and molecular docking. Method: Potential targets of celastrol were collected from TCMSP, Batman-TCM and GeneCard database, and its potential targets were predicted using the STP platform and the TargetNet server. Metastasis marker genes (MGs) were obtained from the HCMDB. The genes correlated with LUAD were gathered from the GeneCard and OMIM database. And the common targets among celastrol potential targets, MGs and LUAD were analyzed. The protein-protein interaction (PPI) networks were obtained from the STRING database. SangerBox and the Xiantao bioinformatics tool were applied to visualize GO and KEGG analysis. Molecular docking tested the binding affinity between celastrol and core genes. Result: A total of 107 targets of celastrol against metastasis LUAD were obtained. The core targets were obtained from the PPI network, namely AKT1, JUN, MYC, STAT3, IL6, TNF, NFKB1, BCL2, IL1B, and HIF1A. GO and KEGG enrichment analysis indicated celastrol for the treatment of metastasis LUAD most refers to cellular response to chemical stress, DNA-binding transcription factor binding, transcription regulator complex and pathways in cancer. And some of these targets are associated with differential expressions and survival rates in LUAD. Moreover, Molecular docking shows celastrol can bind with BCL2 well by hydrogen bond and hydrophobic interaction. Conclusion: This finding roundly expounded the core genes and potential mechanisms of celastrol for the treatment of metastasis LUAD, offering the theoretical basis and antitumor mechanism of TCM in the treatment of lung cancer.
基金Natural Science Foundation of Hebei Province,No.H2018307071Traditional Chinese Medicine Research Plan Project in Hebei Province,No.2022122Hebei Provincial Science and Technology Program,No.17397763D.
文摘BACKGROUND Gastric cancer(GC)is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis.Resveratrol,a non-flavonoid poly-phenolic compound found in a variety of Chinese medicinal materials,has shown excellent anti-GC effect.However,its exact mechanisms of action in GC have not been clarified.AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms.METHODS Action targets of resveratrol and GC-related targets were screened from public databases.The overlapping targets between the two were confirmed using a Venn diagram,and a“Resveratrol-Target-GC”network was constructed using Cyto-scape software version 3.9.1.The protein-protein interaction(PPI)network was constructed using STRING database and core targets were identified by PPI network analysis.The Database for Annotation,Visualization and Integrated A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases,and 181 intersection targets between the two were screened by Venn diagram.The top 20 core targets were identified by PPI network analysis of the overlapping targets.GO function analysis mainly involved protein binding,identical protein binding,cytoplasm,nucleus,negative regulation of apoptotic process and response to xenobiotic stimulus.KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway,MAPK signaling pathway,IL-17 signaling pathway,TNF signaling pathway,ErbB signaling pathway,etc.FBJ murine osteosarcoma viral oncogene homolog(FOS)and matrix metallopeptidase 9(MMP9)were selected by differential expression analysis,and they were closely associated with immune infiltration.Molecular docking results showed that resveratrol docked well with these two targets.Resveratrol treatment arrested the cell cycle at the S phase,induced apoptosis,and weakened viability,migration and invasion in a dose-dependent manner.Furthermore,resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression.CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation,migration,invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
基金This work was supported by an award from the Department of Science and Technology of Jilin Province(20210402043GH and 20210204063YY).
文摘Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.
基金Supported by the National Nature Science Foundation of China,No.81273735 and No.82174319the Natural Science Foundation of Guangdong Province,China,No.2021A1515010961+1 种基金the Key-Area Research and Development Program of Guangdong Province,China,No.2020B1111100011the China Postdoctoral Science Foundation,China,No.2023M740859.
文摘BACKGROUND Curcumin originates from the natural herb turmeric,and its antitumor effects have been known about for a long time.However,the mechanism by which curcumin affects gastric cancer(GC)has not been elucidated.AIM To elucidate the potential mechanisms of curcumin in the treatment of GC.METHODS Network pharmacological approaches were used to perform network analysis of Curcumin.We first analyzed Lipinski’s Rule of Five for the use of Curcumin.Curcumin latent targets were predicted using the PharmMapper,SwissTargetPrediction and DrugBank network databases.GC disease targets were mined through the GeneCard,OMIM,DrugBank and TTD network databases.Then,GO enrichment,KEGG enrichment,protein-protein interaction(PPI),and overall survival analyses were performed.The results were further verified through molecular docking,differential expression analysis and cell experiments.RESULTS We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets.The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways.Following PPI analysis,6 hub targets were identified,namely,estrogen receptor 1(ESR1),epidermal growth factor receptor(EGFR),cytochrome P450 family 3 subfamily A member 4(CYP3A4),mitogen-activated protein kinase 14(MAPK-14),cytochrome P450 family 1 subfamily A member 2(CYP1A2),and cytochrome p450 family 2 subfamily B member 6(CYP2B6).These factors are correlated with decreased survival rates among patients diagnosed with GC.Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes.The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation.mRNA levels of hub targets CYP3A4,MAPK14,CYP1A2,and CYP2B6 in BGC-823 cells were significantly increased in each dose group.CONCLUSION Curcumin can play an anti-GC role through a variety of targets,pathways and biological processes.
基金supported by Key R&D Project in Shandong ProvinceChina(Grant number:2020CXGC010505)+2 种基金Qingdao Science and Technology Demonstration Program for the Benefit of the PeopleShandong ProvinceChina(Grant number:23-7-8-smjk-3-nsh)。
文摘Background:YangshenDingzhi granules(YSDZ)are clinically effective in preventing and treating COVID-19.The present study elucidates the underlying mechanism of YSDZ intervention in viral pneumonia by employing serum pharmacochemistry and network pharmacology.Methods:The chemical constituents of YSDZ in the blood were examined using ultraperformance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS).Potential protein targets were obtained from the SwissTargetPrediction database,and the target genes associated with viral pneumonia were identified using GeneCards,DisGeNET,and Online Mendelian Inheritance in Man(OMIM)databases.The intersection of blood component-related targets and disease-related targets was determined using Venny 2.1.Protein-protein interaction networks were constructed using the STRING database.The Metascape database was employed to perform enrichment analyses of Gene Ontology(GO)functions and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathways for the targets,while the Cytoscape 3.9.1 software was utilized to construct drug-component-disease-target-pathway networks.Further,in vitro and in vivo experiments were performed to establish the therapeutic effectiveness of YSDZ against viral pneumonia.Results:Fifteen compounds and 124 targets linked to viral pneumonia were detected in serum.Among these,MAPK1,MAPK3,AKT1,EGFR,and TNF play significant roles.In vitro tests revealed that the medicated serum suppressed the replication of H1N1,RSV,and SARS-CoV-2 replicon.Further,in vivo testing analysis shows that YSDZ decreases the viral load in the lungs of mice infected with RSV and H1N1.Conclusion:The chemical constituents of YSDZ in the blood may elicit therapeutic effects against viral pneumonia by targeting multiple proteins and pathways.
基金Supported by Project of Science and Technology Department of Guizhou Province ([2019]1401)Guizhou Administration of Traditional Chinese Medicine (QZYY-2021-03)Guizhou Provincial Health Commission (gzwkj2021-464).
文摘[Objectives]To investigate the mechanism of action of glyasperin A(GAA)in intervening menopause using network pharmacology and molecular docking technology.[Methods]All target names of the active ingredients were screened using TCMSP,3D model molecules converted into SMILES online tool,Swiss target prediction and literature search.The relevant target genes corresponding to menopause were identified using the Genecards database.Venn 2.1.0 was then used to generate the corresponding Venn diagram.Finally,the protein-protein interaction(PPI)network was constructed using Cytoscape 3.9.1 software.The core targets that were screened underwent enrichment and analysis using the Gene Ontology(GO)biological process and KEGG pathways with the assistance of the DAVID database and bioinformatics.The molecular docking was then verified using AutoDock and Pymol software on the core targets.[Results]This study screened 100 target genes of active ingredients.In the PPI network,ESR1 and AKT1 were found to have a higher degree.The GO and KEGG enrichment analyses revealed that the biological processes primarily involved platelet activation,regulation of circadian rhythms,and regulation of mRNA stability.The signalling pathways included hepatitis B,cytotoxicity,and gastric cancer.The molecular docking results indicated that the key active ingredients and proteins bound well,as evidenced by their small binding energies.[Conclusions]Using a systematic network pharmacology approach,this study predicts the basic pharmacological effects and potential mechanisms of GAA in intervening menopause,which provides a foundation for further research on its pharmacological mechanisms.
基金supported by the National Natural Science Foundation of China(82004240,82104952)Shanghai Municipal Science and Technology Commission Medical Innovation Research Program(21Y11923600)+1 种基金Shanghai Municipal Health Commission Health Industry Clinical Research Specialization(202140172)Shanghai University of Traditional Chinese Medicine Industrial Development Center Healthcare Integration Science and Innovation Project(YYKC-2021-01-153).
文摘Objective:To investigate the mechanism underlying the effects exerted by the Qizhu prescription(QZP)in breast cancer(BC),and the respective targets.Methods: Expression data from the ArrayExpress and The Cancer Genome Atlas(TCGA)were used to identify differentially expressed genes(DEGs)in BC.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were performed on the DEGs to identify genes involved in protein–protein interactions.Molecular docking was used to explore the dynamic relationship between active molecules and targets.Cell function experiments and animal studies were conducted to evaluate the effects of hub genes and active QZP compounds on BC cell behavior.Results: Among the 25 evaluated BC-related targets of QZP,matrix metalloproteinase-1(MMP1)and epidermal growth factor receptor(EGFR)exhibited the highest degrees of dysregulation.GO and KEGG enrichment analyses revealed that the anti-BC targets of QZP primarily affected drug responses and pathways in cancer cells.Molecular docking analysis suggested potential interactions between EGFR and quercetin/luteolin,as well as between MMP1 and luteolin/kaempferol/quercetin.Quercetin significantly reduced BC cell proliferation,migration,invasion,and tumor development in vivo.Treatment of BC cells with quercetin decreased the expression or activation of several associated proteins.Conclusion: The findings of our study provide new insights into the therapeutic potential of traditional Chinese medicine against BC,with particular reference to QZP.