Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the La...Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.展开更多
Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear ...Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.展开更多
Under dynamic loading, the constitutive relation of the cement mortar will be significantly affected by the transversal inertial effect of specimens with large diameters. In this paper, one-dimensional theoretical ana...Under dynamic loading, the constitutive relation of the cement mortar will be significantly affected by the transversal inertial effect of specimens with large diameters. In this paper, one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.展开更多
In this paper,the Gaoyou-Baoying M_S4.9 earthquake was analyzed by the geomagnetic harmonic wave amplitude ratios method. The earthquake was an isolated seismic event,before and after which there were no other earthqu...In this paper,the Gaoyou-Baoying M_S4.9 earthquake was analyzed by the geomagnetic harmonic wave amplitude ratios method. The earthquake was an isolated seismic event,before and after which there were no other earthquakes occurred in this region. The dense distribution of geomagnetic observataries provided an advantage condition for the analysis of characteristics of the geomagnetic harmonic amplitude ratios. The analysis results verify the former knowledge of anomaly characteristics of the geomagnetic harmonic amplitude ratio,that is,the anomalous characteristics of the earthquake mostly appeared during the decline-turning-recovery rising process. The results also show that the change of the anomalies was asynchronous at the observatories close to the epicenter, namely, the anomalous characteristics were different between the H and the D components,as well as between the long and short periods.展开更多
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved ...The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.展开更多
Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged st...Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.展开更多
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L^5) off the magnetic equator...Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L^5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.展开更多
The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are p...The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.展开更多
The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current w...The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current. Imposed pulse current could induce the solidification system to oscillate. The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of dusters in melt, the oscillating state of melt on the surface of dusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work. Rectangle wave pulse current involves rich harmonic waves ; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.展开更多
Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial st...Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.展开更多
The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-...The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.展开更多
A novel model of a hyperbolic two-temperature theory is investigated to study the propagation the thermoelastic waves on semiconductor materials.The governing equations are studied during the photo-excitation processe...A novel model of a hyperbolic two-temperature theory is investigated to study the propagation the thermoelastic waves on semiconductor materials.The governing equations are studied during the photo-excitation processes in the context of the photothermal theory.The outer surface of o semiconductor medium is illuminated by a laser pulse.The generalized photo-thermoelasticity theory in two dimensions(2D)deformation is used in many models(Lord–Shulman(LS),Green–Lindsay(GL)and the classical dynamical coupled theory(CD)).The combinations processes between the hyperbolic two-temperature theory and photo-thermoelasticity theory under the effect of laser pulses are obtained analytically.The harmonic wave technique is used to obtain the exact solutions of the main physical fields under investigation.The mechanical,thermal and recombination plasma loads are applied at the free surface of the medium to obtain the complete solutions of the basic physical fields.Some comparisons are made between the three thermoelastcity theories under the electrical effect of thermoelectric coupling parameter.The influence of hyperbolic two-temperature,two-temperature and one temperature parameters on the distributions of wave propagation of physical fields for semiconductor silicon(Si)medium is shown graphically and discussed.展开更多
A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control....A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control. In the simulation model, the feedback signals of current and voltage are taken respectively at the different phase in a short circuit periodic time and applied to the PWM (pulse width modulation) module in a model of inverter power source to control the output of power source. The simulation operation about the dynamic process of CO2 short-circuiting transfer welding is implemented on the founded simulation model with a peak arc current of 400 A and a peak voltage of 35 V, producing the dynamic arc waveforms which can embody the effect of inverter harmonic wave. The simulating waveforms are close to that of welding experiments.展开更多
Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveban...Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.展开更多
Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperio...Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperiod ground motion is desirable for engineering applications.In this work,an analytical study is performed to examine the effect of several parameters and the combining mode for equivalent harmonic components on the dynamic response of systems.The results of the work show that the harmonic components in equivalent ground motion are evidently influenced by the intensity rise time,duration,phase and combining mode.Moreover,the long-period ground motions are simplified and simulated by separate harmonic components through proper combination.The findings of the work are believed to be useful in the selection of input ground motion in structural seismic analysis.展开更多
This paper examines the characteristics of a harmonic plane wave in 1D and applies it to a model of an auditorium in the shape of a quarter of an ellipsoid. In the application, this paper will mainly look at transmiss...This paper examines the characteristics of a harmonic plane wave in 1D and applies it to a model of an auditorium in the shape of a quarter of an ellipsoid. In the application, this paper will mainly look at transmission loss, reverberation, disruption of the performers, and differences between different frequencies. The differences between different frequencies will be analyzed on both a macroscopic auditorium level as well as on a microscopic level of a single point in the audience.展开更多
In this paper, the dynamic response of saturated and layered soils under harmonic waves is modeled using the finite element method. The numerical results are then verified by corresponding analytical solutions which a...In this paper, the dynamic response of saturated and layered soils under harmonic waves is modeled using the finite element method. The numerical results are then verified by corresponding analytical solutions which are also developed by the author. The equations governing the dynamics of porous media are written in their fully dynamic form and possible simplifications are introduced based on the presence of inertial terms associated with solid and fluid phases. The response variations are presented in terms of pore water pressure and shear stress distributions within the layers. It is determined that a set of non-dimensional parameters and their respective ratios as a result of layering play a major role in the dynamic response.展开更多
Ghasemzadeh and Abounouri[1]developed a mathematical model of partially saturated soils that is solved using the potential method,which decomposes elastodynamics equations into two standard wave equations,a scalar wav...Ghasemzadeh and Abounouri[1]developed a mathematical model of partially saturated soils that is solved using the potential method,which decomposes elastodynamics equations into two standard wave equations,a scalar wave equation for scalar potential and a vector wave equation for vector potential.In such a medium,four waves exist three longitudinal and one shear.Each fluid phase tortuous path is taken into account in this model.The inertial coupling between solid and fluid particles is consid-ered.Furthermore,both open-pore and sealed-pore boundaries are explored to investigate the reflection phenomenon at the surface of partially saturated soils.For both boundaries,the reflection coefficients of inhomogeneous waves at a partially saturated soil surface are found as a non-singular set of linear equations.All waves(both reflected and incident)in partially saturated soils are pronounced as inhomogeneous due to viscosity in pore fluids(i.e.,distinct directions of attenuation and propagation).The energy shares of reflected waves are determined using an energy matrix.A numerical example is used to determine the reflection coefficients and the distribution of incident energy among the various reflected waves.The effect of different physical features on reflection coefficients and incident energy partitioning is illustrated graphically.The conservation of incident energy at the surface of partially saturated soils is mathematically confirmed at all angles of incidence.展开更多
A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition proble...A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.展开更多
This work concerns multiple-scattering problems for time-harmonic equations in a reference genericmedia.We consider scatterers that can be sources,obstacles or compact perturbations of the reference media.Our aim is t...This work concerns multiple-scattering problems for time-harmonic equations in a reference genericmedia.We consider scatterers that can be sources,obstacles or compact perturbations of the reference media.Our aim is to restrict the computational domain to small compact domains containing the scatterers.We use Robin-to-Robin(RtR)operators(in the most general case)to express boundary conditions for the interior problem.We show that one can always factorize the RtR map using only operators defined using single-scatterer problems.This factorization is based on a decomposition of the diffracted field,on thewhole domainwhere it is defined.Assuming that there exists a good method for solving single-scatterer problems,it then gives a convenient way to compute RtR maps for a random number of scatterers.展开更多
文摘Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.
基金Project supported by the National Natural Science Foundation of China(No.10772022)
文摘Transmission of elastic waves through a micro gap between two solids with consideration of frictional contact is investigated. By using the Fourier analysis technique and the corrective solution method, the nonlinear boundary problem is reduced to a set of algebraic equations. Numerical results exhibit the locations and extents of separation, slip, and stick zones, the interface tractions, and the energy partition. The effects of gap width, frictional coefficients, and the incident angle on the wave transmission are discussed in detail. The results show that higher harmonics are generated due to the local contact/slip at the interface.
基金the National Natural Science Foundation of China(No.10572064)K.C.Wong Magna Fund in Ningbo University,and the Natural Science Foundation of Zhejiang Province(No.Y107780)Ningbo University(No.XK0609017).
文摘Under dynamic loading, the constitutive relation of the cement mortar will be significantly affected by the transversal inertial effect of specimens with large diameters. In this paper, one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.
基金funded by the routine task entitled“The Routine Recognition and Tracking of HVDC's Interference in Geomagnetic Observation”of the Technical Management Group of Electromagnetic Discipline,CEA
文摘In this paper,the Gaoyou-Baoying M_S4.9 earthquake was analyzed by the geomagnetic harmonic wave amplitude ratios method. The earthquake was an isolated seismic event,before and after which there were no other earthquakes occurred in this region. The dense distribution of geomagnetic observataries provided an advantage condition for the analysis of characteristics of the geomagnetic harmonic amplitude ratios. The analysis results verify the former knowledge of anomaly characteristics of the geomagnetic harmonic amplitude ratio,that is,the anomalous characteristics of the earthquake mostly appeared during the decline-turning-recovery rising process. The results also show that the change of the anomalies was asynchronous at the observatories close to the epicenter, namely, the anomalous characteristics were different between the H and the D components,as well as between the long and short periods.
基金Project supported by the National Natural Science Foundation of China (Nos.50232030, 10172030, 10572043)the Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province (No.JC04-08)the Natural Science Foundation of Heilongjiang Province (No.A0301)
文摘The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.
文摘Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41374168, 41521063 & 41174140)Key Grant Project of Chinese Ministry of Education (Grant No. 2042015KF0169)Program for New Century Excellent Talents in University (Grant No. NCET-13-0446)
文摘Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L^5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51325504,11474093,11622430 and 11474361the National Key Research and Development Program of China(2016YFC0801903-02)the Fundamental Research Funds for the Central Universities
文摘The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.
基金Funded by the Natural Science Foundation of Gansu Province(No.ZS021-A25-027-C)
文摘The effect of rectangle wave pulse current on solidification structure of ZA27 alloy was studied. The restdts show that the wave pattern relies on the frequency range of harmonic wave and the energy of pulse current within the frequency range of pulse current. Imposed pulse current could induce the solidification system to oscillate. The frequency range and the relevant energy distribution of pulse current exert an influence on the amount of atoms involved for forming critical nucleus, the surface states of dusters in melt, the oscillating state of melt on the surface of dusters, the active energy of atom diffusion , the frequnce response of the resonance of bulk melt and the absorbability of the solidification system to the external work. Rectangle wave pulse current involves rich harmonic waves ; the amplitudes of high order of harmonic waves are higher and reduce slowly, so it has a better effect on inoculation and modification.
基金Projects 50278057 supported by National Natural Science Foundation of China and 2002CB412703 supported by 973 Project
文摘Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.
文摘The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
基金funding this research work through the project number(IFP-2020-08).
文摘A novel model of a hyperbolic two-temperature theory is investigated to study the propagation the thermoelastic waves on semiconductor materials.The governing equations are studied during the photo-excitation processes in the context of the photothermal theory.The outer surface of o semiconductor medium is illuminated by a laser pulse.The generalized photo-thermoelasticity theory in two dimensions(2D)deformation is used in many models(Lord–Shulman(LS),Green–Lindsay(GL)and the classical dynamical coupled theory(CD)).The combinations processes between the hyperbolic two-temperature theory and photo-thermoelasticity theory under the effect of laser pulses are obtained analytically.The harmonic wave technique is used to obtain the exact solutions of the main physical fields under investigation.The mechanical,thermal and recombination plasma loads are applied at the free surface of the medium to obtain the complete solutions of the basic physical fields.Some comparisons are made between the three thermoelastcity theories under the electrical effect of thermoelectric coupling parameter.The influence of hyperbolic two-temperature,two-temperature and one temperature parameters on the distributions of wave propagation of physical fields for semiconductor silicon(Si)medium is shown graphically and discussed.
基金Supported by National Natural Science Foundation of China ( No59975068)Natural Science Foundation of Tianjin ( No993602911)
文摘A simulation model is introduced about the non-linearity process of short-circuiting transfer in CO2 arc welding for displaying the interaction between the inverter power source and welding arc under waveform control. In the simulation model, the feedback signals of current and voltage are taken respectively at the different phase in a short circuit periodic time and applied to the PWM (pulse width modulation) module in a model of inverter power source to control the output of power source. The simulation operation about the dynamic process of CO2 short-circuiting transfer welding is implemented on the founded simulation model with a peak arc current of 400 A and a peak voltage of 35 V, producing the dynamic arc waveforms which can embody the effect of inverter harmonic wave. The simulating waveforms are close to that of welding experiments.
文摘Based on spectrum principle and analyzing the infrared absorption spectrum ofmethane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributedfeedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology isused to carry out harmonic wave detecting the concentration of methane. The sensitivity can arriveat 10^(-5). Experiments results show that the performance targets of the sensor such as sensitivitycan basically satisfy the requests of methane detection.
基金Supported by Major Research Plan of National Natural Science Foundation of China(No.91215301)National Natural Science Foundation of China(No.51238012,No.51178152,No.51008208)the Special Fund for Earthquake Scientific Research in the Public Interest(No.201208013)
文摘Long-period ground motion has become an important consideration because of the increasing number of large and long-period structures.Therefore,a thorough investigation on the formation and characteristics of longperiod ground motion is desirable for engineering applications.In this work,an analytical study is performed to examine the effect of several parameters and the combining mode for equivalent harmonic components on the dynamic response of systems.The results of the work show that the harmonic components in equivalent ground motion are evidently influenced by the intensity rise time,duration,phase and combining mode.Moreover,the long-period ground motions are simplified and simulated by separate harmonic components through proper combination.The findings of the work are believed to be useful in the selection of input ground motion in structural seismic analysis.
文摘This paper examines the characteristics of a harmonic plane wave in 1D and applies it to a model of an auditorium in the shape of a quarter of an ellipsoid. In the application, this paper will mainly look at transmission loss, reverberation, disruption of the performers, and differences between different frequencies. The differences between different frequencies will be analyzed on both a macroscopic auditorium level as well as on a microscopic level of a single point in the audience.
文摘In this paper, the dynamic response of saturated and layered soils under harmonic waves is modeled using the finite element method. The numerical results are then verified by corresponding analytical solutions which are also developed by the author. The equations governing the dynamics of porous media are written in their fully dynamic form and possible simplifications are introduced based on the presence of inertial terms associated with solid and fluid phases. The response variations are presented in terms of pore water pressure and shear stress distributions within the layers. It is determined that a set of non-dimensional parameters and their respective ratios as a result of layering play a major role in the dynamic response.
文摘Ghasemzadeh and Abounouri[1]developed a mathematical model of partially saturated soils that is solved using the potential method,which decomposes elastodynamics equations into two standard wave equations,a scalar wave equation for scalar potential and a vector wave equation for vector potential.In such a medium,four waves exist three longitudinal and one shear.Each fluid phase tortuous path is taken into account in this model.The inertial coupling between solid and fluid particles is consid-ered.Furthermore,both open-pore and sealed-pore boundaries are explored to investigate the reflection phenomenon at the surface of partially saturated soils.For both boundaries,the reflection coefficients of inhomogeneous waves at a partially saturated soil surface are found as a non-singular set of linear equations.All waves(both reflected and incident)in partially saturated soils are pronounced as inhomogeneous due to viscosity in pore fluids(i.e.,distinct directions of attenuation and propagation).The energy shares of reflected waves are determined using an energy matrix.A numerical example is used to determine the reflection coefficients and the distribution of incident energy among the various reflected waves.The effect of different physical features on reflection coefficients and incident energy partitioning is illustrated graphically.The conservation of incident energy at the surface of partially saturated soils is mathematically confirmed at all angles of incidence.
基金supported by the Funds for Creative Research Groups of China (Grant No.50621062)
文摘A physical random function model of ground motions for engineering purposes is presented with verification of sample level. Firstly,we derive the Fourier spectral transfer form of the solution to the definition problem,which describes the one-dimensional seismic wave field. Then based on the special models of the source,path and local site,the physical random function model of ground motions is obtained whose physical parameters are random variables. The superposition method of narrow-band harmonic wave groups is improved to synthesize ground motion samples. Finally,an application of this model to simulate ground motion records in 1995 Kobe earthquake is described. The resulting accelerograms have the frequencydomain and non-stationary characteristics that are in full agreement with the realistic ground motion records.
文摘This work concerns multiple-scattering problems for time-harmonic equations in a reference genericmedia.We consider scatterers that can be sources,obstacles or compact perturbations of the reference media.Our aim is to restrict the computational domain to small compact domains containing the scatterers.We use Robin-to-Robin(RtR)operators(in the most general case)to express boundary conditions for the interior problem.We show that one can always factorize the RtR map using only operators defined using single-scatterer problems.This factorization is based on a decomposition of the diffracted field,on thewhole domainwhere it is defined.Assuming that there exists a good method for solving single-scatterer problems,it then gives a convenient way to compute RtR maps for a random number of scatterers.