Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num...Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.展开更多
In the intricate landscape of healthcare,vicarious liability looms large,shaping the responsibilities and actions of healthcare practitioners and administrators alike.Illustrated by a poignant scenario of a medication...In the intricate landscape of healthcare,vicarious liability looms large,shaping the responsibilities and actions of healthcare practitioners and administrators alike.Illustrated by a poignant scenario of a medication error,this article navigates the complexities of vicarious liability in healthcare.It explains the legal basis and ramifications of this theory,emphasizing its importance in fostering responsibility,protecting patient welfare,and easing access to justice.The paper explores the practical effects of vicarious responsibility on day-to-day operations,leadership practices,and decision-making processes via the eyes of senior consultants,junior doctors,and hospital administrators.Through comprehensive insights and real-world examples,it underscores the imperative of fostering a culture of accountability,communication,and quality care to navigate the intricate web of liabilities inherent in modern healthcare.展开更多
BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confid...BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.展开更多
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge...Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge of ensuring quality healthcare access. The overview of the effect of quality improvement initiatives in this paper focuses on private healthcare providers in Lagos State, Nigeria. The study assesses the impact of donor-funded quality improvement projects on these private healthcare facilities. It explores the level of participation, perceived support, and tangible effects of the initiatives on healthcare delivery within private healthcare facilities. It also examines how these initiatives influence patient inflow and facility ratings, and bring about additional benefits and improvements, provides insights into the challenges faced by private healthcare providers in implementing quality improvement projects and elicits recommendations for improving the effectiveness of such initiatives. Methods: Qualitative research design was employed for in-depth exploration, utilizing semi-structured interviews. Private healthcare providers in Lagos involved in the SP4FP Quality Improvement Project were purposively sampled for diversity. Face-to-face interviews elicited insights into participation, perceived support, and project effects. Questions covered participation levels, support perception, changes observed, challenges faced, and recommendations. Thematic analysis identified recurring themes from interview transcripts. Adherence to ethical guidelines ensured participant confidentiality and informed consent. Results: Respondents affirmed active involvement in the SP4FP Quality Improvement Project, echoing literature emphasizing private-sector collaboration with the public sector. While acknowledging positive influences on facility ratings, respondents highlighted challenges within the broader Nigerian healthcare landscape affecting patient numbers. Respondents cited tangible improvements, particularly in staff management and patient care processes, validating the positive influence of quality improvement projects. Financial constraints emerged as a significant challenge, aligning with existing literature emphasizing the pragmatic difficulties faced by private healthcare providers. Conclusions: This study illuminates the complex landscape of private healthcare provision in Lagos State, emphasizing the positive impact of donor-funded quality improvement projects. The findings provide nuanced insights, guiding policymakers, healthcare managers, and practitioners toward collaborative, sustainable improvements. As Nigeria progresses, these lessons will be crucial in shaping healthcare policies prioritizing population well-being.展开更多
This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to en...This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to enhance healthcare outcomes and reduce disparities,there is a growing concern that these technologies may inadvertently/advertently exacerbate existing racial inequalities.Focusing specifically on the experiences of Black patients,this research investigates how the following AI components:medical algorithms,machine learning,and natural learning processes are contributing to the unequal distribution of medical resources,diagnosis,and health care treatment of those classified as Black.Furthermore,this review employs a multidisciplinary approach,combining insights from computer science,medical ethics,and social justice theory to analyze the mechanisms through which AI systems may encode and reinforce racial biases.By dissecting the three primary components of AI,this paper aims to present a clear understanding of how these technologies work,how they intersect,and how they may inherently perpetuate harmful stereotypes resulting in negligent outcomes for Black patients.Furthermore,this paper explores the ethical implications of deploying AI in healthcare settings and calls for increased transparency,accountability,and diversity in the development and implementation of these technologies.Finally,it is important that I prefer the following paper with a clear and concise definition of what I refer to as Anti-Black racism throughout the text.Therefore,I assert the following:Anti-Black racism refers to prejudice,discrimination,or antagonism directed against individuals or communities of African descent based on their race.It involves the belief in the inherent superiority of one race over another and the systemic and institutional practices that perpetuate inequality and disadvantage for Black people.Furthermore,I proclaim that this form of racism can be manifested in various ways,such as unequal access to opportunities,resources,education,employment,and fair treatment within social,economic,and political systems.It is also pertinent to acknowledge that Anti-Black racism is deeply rooted in historical and societal structures throughout the U.S.borders and beyond,leading to systemic disadvantages and disparities that impact the well-being and life chances of Black individuals and communities.Addressing Anti-Black racism involves recognizing and challenging both individual attitudes and systemic structures that contribute to discrimination and inequality.Efforts to combat Anti-Black racism include promoting awareness,education,advocacy for policy changes,and fostering a culture of inclusivity and equality.展开更多
Objective:Healthcare-seeking behavior(HSB)would affect the prevalence of morbidity and mortality.There are various factors that affect one's HSB.This study aimed to determine if health awareness and lifestyle migh...Objective:Healthcare-seeking behavior(HSB)would affect the prevalence of morbidity and mortality.There are various factors that affect one's HSB.This study aimed to determine if health awareness and lifestyle might relate to HSB.Methods:A cross-sectional study was applied by using three questionnaires to determine par ticipants'health awareness,lifestyle,and HSB.This study took place in Universitas Advent Indonesia and the students were recruited to be par ticipants.Results:There were 39 par ticipants joined in this study.Most of the par ticipants were females,third-year students,and from Accounting major.Almost all participants were aware of their low risk of health issues,had a fine lifestyle,and had moderate HSB.Conclusions:One's urge to seek health care facilities was not related to their health awareness and lifestyle.There was no fur ther study to contradict with this finding at this moment.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool...The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool hearing screening(PHS)is vital to continue screening throughout early childhood.The current practice of PHS in the primary healthcare centers(PHCs)in Saudi Arabia is unknown.The purpose of this study was to investigate PHS in the PHCs.This cross-sectional descriptive study used an in-person-administered questionnaire to collect data.A total of 106 out of 120 participants(male=61;female=45)representing the PHCs in Riyadh were interviewed.Most of the participants were aged 31–40 years and held a bachelor’s degree as the highest academic qualification with limited years of experience.PHS was mostly performed through subjective measures by asking the parents(71.7%)and the child(65.1%).The audiometric evaluation was conducted for preschool children in only half of the PHCs.General practitioners and nurses usually perform PHS.Substantial gaps in the practice of PHS were identified.The lack of training and appropriate instruments and the need for audiological services were the main challenges.Incorporating robust and objective protocols for PHS into the educational system is a valuable strategy for identifying hearing loss early and reducing its impact through the establishment of effective intervention plans.展开更多
Federated learning is an innovative machine learning technique that deals with centralized data storage issues while maintaining privacy and security.It involves constructing machine learning models using datasets spr...Federated learning is an innovative machine learning technique that deals with centralized data storage issues while maintaining privacy and security.It involves constructing machine learning models using datasets spread across several data centers,including medical facilities,clinical research facilities,Internet of Things devices,and even mobile devices.The main goal of federated learning is to improve robust models that benefit from the collective knowledge of these disparate datasets without centralizing sensitive information,reducing the risk of data loss,privacy breaches,or data exposure.The application of federated learning in the healthcare industry holds significant promise due to the wealth of data generated from various sources,such as patient records,medical imaging,wearable devices,and clinical research surveys.This research conducts a systematic evaluation and highlights essential issues for the selection and implementation of federated learning approaches in healthcare.It evaluates the effectiveness of federated learning strategies in the field of healthcare.It offers a systematic analysis of federated learning in the healthcare domain,encompassing the evaluation metrics employed.In addition,this study highlights the increasing interest in federated learning applications in healthcare among scholars and provides foundations for further studies.展开更多
Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus s...Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.展开更多
Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorit...Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.展开更多
Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nu...Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nursing by analyzing the frequency and duration of activities performed by nurses,instances of task overlap,and the distribution of break times within a primary healthcare center.Methods:This study was conducted using a descriptive working method.Nursing activities were recorded with the observation of six nurses,each monitored for 37.5 h.We used the Maribor System for measuring Quantity in Nursing Care in Primary Health Care Settings to measure the nursing care activities about direct patient care,indirect patient care,and other unproductive aspects through direct non-participant observations.Results:About 41.5%(n=1,640)of all nursing activities involving direct contact with patients,about 38.2%(n=1,508)was indirect patient care,where a large amount worked with paper files(n=666,16.9%).In addition,about 15.0%were other nursing activities(mostly computer work),and just 5.3%(n=210)of tasks were unproductive.The observational findings indicate a pronounced level of work intensity experienced by nurses in primary health clinics.Significantly,nurses were predominantly engaged in direct patient care tasks,often managing multiple activities simultaneously.Their transitions between tasks occurred approximately every 3 min,frequently without adequate intervals for breaks.Conclusions:This study highlights the need to shift nurses’focus from a task-centric approach to one centered on patient care.The prevailing emphasis on tasks may contribute to enduring fatigue and professional dissatisfaction.Consequently,there is an urgent need to redefine the scope of a nurse’s role and implement a comprehensive computer information system as an integral part of this redefined approach.展开更多
In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes....In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.展开更多
As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in dat...As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.展开更多
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ...Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,whi...Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,which makes it a burden for institutes and unaffordable for patients.This systematic literature review(SLR)focused on the various RAS training methods applied in different surgical specialties,as well as the cost elements of RAS,and was to summarize the opportunities and challenges associated with scaling up RAS.Methods An SLR was carried out based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses reporting guidelines.The PubMed,EBSCO,and Scopus databases were searched for reports from January 2018 through January 2024.Full-text reviews and research articles in the English language from Asia-Pacific countries were included.Articles that outlined training and costs associated with RAS were chosen.Results The most common training system is the da Vinci system.The simulation technique,which includes dry-lab,wet-lab,and virtual reality training,was found to be a common and important practice.The cost of RAS encompasses the installation and maintenance costs of the robotic system,the operation theatre rent,personnel cost,surgical instrument and material cost,and other miscellaneous charges.The synthesis of SLR revealed the challenges and opportunities regarding RAS training and cost.Conclusions The results of this SLR will help stakeholders such as decision-makers,influencers,and end users of RAS to understand the significance of training and cost in scaling up RAS from a managerial perspective.For any healthcare innovation to reach a vast population,cost-effectiveness and standard training are crucial.展开更多
The medical metaverse and digital twin are set to revolutionise healthcare.Like all emerging technologies their benefits must be weighed against their ethical and social,impacts.If we consider the advances of medical ...The medical metaverse and digital twin are set to revolutionise healthcare.Like all emerging technologies their benefits must be weighed against their ethical and social,impacts.If we consider the advances of medical technology as an expression of our values,such as the pursuit of knowledge,cures and healing,an ethical study allows us to align our values and steer the technology towards an agreed goal.However,to appreciate the long-term consequents of a technology,those consequences must be considered in the context of a society already shaped by that technology.This paper identifies the technologies currently shaping society and considers the ethical,and social consequences of the medical metaverse and digital twin in that future society.展开更多
文摘Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.
文摘In the intricate landscape of healthcare,vicarious liability looms large,shaping the responsibilities and actions of healthcare practitioners and administrators alike.Illustrated by a poignant scenario of a medication error,this article navigates the complexities of vicarious liability in healthcare.It explains the legal basis and ramifications of this theory,emphasizing its importance in fostering responsibility,protecting patient welfare,and easing access to justice.The paper explores the practical effects of vicarious responsibility on day-to-day operations,leadership practices,and decision-making processes via the eyes of senior consultants,junior doctors,and hospital administrators.Through comprehensive insights and real-world examples,it underscores the imperative of fostering a culture of accountability,communication,and quality care to navigate the intricate web of liabilities inherent in modern healthcare.
文摘BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
文摘Background: Nigeria, a nation grappling with rapid population growth, economic intricacies, and complex healthcare challenges, particularly in Lagos State, the economic hub and most populous state, faces the challenge of ensuring quality healthcare access. The overview of the effect of quality improvement initiatives in this paper focuses on private healthcare providers in Lagos State, Nigeria. The study assesses the impact of donor-funded quality improvement projects on these private healthcare facilities. It explores the level of participation, perceived support, and tangible effects of the initiatives on healthcare delivery within private healthcare facilities. It also examines how these initiatives influence patient inflow and facility ratings, and bring about additional benefits and improvements, provides insights into the challenges faced by private healthcare providers in implementing quality improvement projects and elicits recommendations for improving the effectiveness of such initiatives. Methods: Qualitative research design was employed for in-depth exploration, utilizing semi-structured interviews. Private healthcare providers in Lagos involved in the SP4FP Quality Improvement Project were purposively sampled for diversity. Face-to-face interviews elicited insights into participation, perceived support, and project effects. Questions covered participation levels, support perception, changes observed, challenges faced, and recommendations. Thematic analysis identified recurring themes from interview transcripts. Adherence to ethical guidelines ensured participant confidentiality and informed consent. Results: Respondents affirmed active involvement in the SP4FP Quality Improvement Project, echoing literature emphasizing private-sector collaboration with the public sector. While acknowledging positive influences on facility ratings, respondents highlighted challenges within the broader Nigerian healthcare landscape affecting patient numbers. Respondents cited tangible improvements, particularly in staff management and patient care processes, validating the positive influence of quality improvement projects. Financial constraints emerged as a significant challenge, aligning with existing literature emphasizing the pragmatic difficulties faced by private healthcare providers. Conclusions: This study illuminates the complex landscape of private healthcare provision in Lagos State, emphasizing the positive impact of donor-funded quality improvement projects. The findings provide nuanced insights, guiding policymakers, healthcare managers, and practitioners toward collaborative, sustainable improvements. As Nigeria progresses, these lessons will be crucial in shaping healthcare policies prioritizing population well-being.
文摘This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to enhance healthcare outcomes and reduce disparities,there is a growing concern that these technologies may inadvertently/advertently exacerbate existing racial inequalities.Focusing specifically on the experiences of Black patients,this research investigates how the following AI components:medical algorithms,machine learning,and natural learning processes are contributing to the unequal distribution of medical resources,diagnosis,and health care treatment of those classified as Black.Furthermore,this review employs a multidisciplinary approach,combining insights from computer science,medical ethics,and social justice theory to analyze the mechanisms through which AI systems may encode and reinforce racial biases.By dissecting the three primary components of AI,this paper aims to present a clear understanding of how these technologies work,how they intersect,and how they may inherently perpetuate harmful stereotypes resulting in negligent outcomes for Black patients.Furthermore,this paper explores the ethical implications of deploying AI in healthcare settings and calls for increased transparency,accountability,and diversity in the development and implementation of these technologies.Finally,it is important that I prefer the following paper with a clear and concise definition of what I refer to as Anti-Black racism throughout the text.Therefore,I assert the following:Anti-Black racism refers to prejudice,discrimination,or antagonism directed against individuals or communities of African descent based on their race.It involves the belief in the inherent superiority of one race over another and the systemic and institutional practices that perpetuate inequality and disadvantage for Black people.Furthermore,I proclaim that this form of racism can be manifested in various ways,such as unequal access to opportunities,resources,education,employment,and fair treatment within social,economic,and political systems.It is also pertinent to acknowledge that Anti-Black racism is deeply rooted in historical and societal structures throughout the U.S.borders and beyond,leading to systemic disadvantages and disparities that impact the well-being and life chances of Black individuals and communities.Addressing Anti-Black racism involves recognizing and challenging both individual attitudes and systemic structures that contribute to discrimination and inequality.Efforts to combat Anti-Black racism include promoting awareness,education,advocacy for policy changes,and fostering a culture of inclusivity and equality.
文摘Objective:Healthcare-seeking behavior(HSB)would affect the prevalence of morbidity and mortality.There are various factors that affect one's HSB.This study aimed to determine if health awareness and lifestyle might relate to HSB.Methods:A cross-sectional study was applied by using three questionnaires to determine par ticipants'health awareness,lifestyle,and HSB.This study took place in Universitas Advent Indonesia and the students were recruited to be par ticipants.Results:There were 39 par ticipants joined in this study.Most of the par ticipants were females,third-year students,and from Accounting major.Almost all participants were aware of their low risk of health issues,had a fine lifestyle,and had moderate HSB.Conclusions:One's urge to seek health care facilities was not related to their health awareness and lifestyle.There was no fur ther study to contradict with this finding at this moment.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
文摘The hearing status of children should be examined throughout early childhood,even if they have passed the newborn hearing loss because hearing loss can occur at any time and may affect their ability to learn.Preschool hearing screening(PHS)is vital to continue screening throughout early childhood.The current practice of PHS in the primary healthcare centers(PHCs)in Saudi Arabia is unknown.The purpose of this study was to investigate PHS in the PHCs.This cross-sectional descriptive study used an in-person-administered questionnaire to collect data.A total of 106 out of 120 participants(male=61;female=45)representing the PHCs in Riyadh were interviewed.Most of the participants were aged 31–40 years and held a bachelor’s degree as the highest academic qualification with limited years of experience.PHS was mostly performed through subjective measures by asking the parents(71.7%)and the child(65.1%).The audiometric evaluation was conducted for preschool children in only half of the PHCs.General practitioners and nurses usually perform PHS.Substantial gaps in the practice of PHS were identified.The lack of training and appropriate instruments and the need for audiological services were the main challenges.Incorporating robust and objective protocols for PHS into the educational system is a valuable strategy for identifying hearing loss early and reducing its impact through the establishment of effective intervention plans.
基金This work was supported by a research fund from Chosun University,2023。
文摘Federated learning is an innovative machine learning technique that deals with centralized data storage issues while maintaining privacy and security.It involves constructing machine learning models using datasets spread across several data centers,including medical facilities,clinical research facilities,Internet of Things devices,and even mobile devices.The main goal of federated learning is to improve robust models that benefit from the collective knowledge of these disparate datasets without centralizing sensitive information,reducing the risk of data loss,privacy breaches,or data exposure.The application of federated learning in the healthcare industry holds significant promise due to the wealth of data generated from various sources,such as patient records,medical imaging,wearable devices,and clinical research surveys.This research conducts a systematic evaluation and highlights essential issues for the selection and implementation of federated learning approaches in healthcare.It evaluates the effectiveness of federated learning strategies in the field of healthcare.It offers a systematic analysis of federated learning in the healthcare domain,encompassing the evaluation metrics employed.In addition,this study highlights the increasing interest in federated learning applications in healthcare among scholars and provides foundations for further studies.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under Grant Number(DGSSR-2023-02-02513).
文摘Spear Phishing Attacks(SPAs)pose a significant threat to the healthcare sector,resulting in data breaches,financial losses,and compromised patient confidentiality.Traditional defenses,such as firewalls and antivirus software,often fail to counter these sophisticated attacks,which target human vulnerabilities.To strengthen defenses,healthcare organizations are increasingly adopting Machine Learning(ML)techniques.ML-based SPA defenses use advanced algorithms to analyze various features,including email content,sender behavior,and attachments,to detect potential threats.This capability enables proactive security measures that address risks in real-time.The interpretability of ML models fosters trust and allows security teams to continuously refine these algorithms as new attack methods emerge.Implementing ML techniques requires integrating diverse data sources,such as electronic health records,email logs,and incident reports,which enhance the algorithms’learning environment.Feedback from end-users further improves model performance.Among tested models,the hierarchical models,Convolutional Neural Network(CNN)achieved the highest accuracy at 99.99%,followed closely by the sequential Bidirectional Long Short-Term Memory(BiLSTM)model at 99.94%.In contrast,the traditional Multi-Layer Perceptron(MLP)model showed an accuracy of 98.46%.This difference underscores the superior performance of advanced sequential and hierarchical models in detecting SPAs compared to traditional approaches.
文摘Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.
文摘Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nursing by analyzing the frequency and duration of activities performed by nurses,instances of task overlap,and the distribution of break times within a primary healthcare center.Methods:This study was conducted using a descriptive working method.Nursing activities were recorded with the observation of six nurses,each monitored for 37.5 h.We used the Maribor System for measuring Quantity in Nursing Care in Primary Health Care Settings to measure the nursing care activities about direct patient care,indirect patient care,and other unproductive aspects through direct non-participant observations.Results:About 41.5%(n=1,640)of all nursing activities involving direct contact with patients,about 38.2%(n=1,508)was indirect patient care,where a large amount worked with paper files(n=666,16.9%).In addition,about 15.0%were other nursing activities(mostly computer work),and just 5.3%(n=210)of tasks were unproductive.The observational findings indicate a pronounced level of work intensity experienced by nurses in primary health clinics.Significantly,nurses were predominantly engaged in direct patient care tasks,often managing multiple activities simultaneously.Their transitions between tasks occurred approximately every 3 min,frequently without adequate intervals for breaks.Conclusions:This study highlights the need to shift nurses’focus from a task-centric approach to one centered on patient care.The prevailing emphasis on tasks may contribute to enduring fatigue and professional dissatisfaction.Consequently,there is an urgent need to redefine the scope of a nurse’s role and implement a comprehensive computer information system as an integral part of this redefined approach.
基金the Researchers Supporting Project number(RSP2024R281),King Saud University,Riyadh,Saudi Arabia.
文摘In the rapidly evolving landscape of healthcare,the integration of Artificial Intelligence(AI)and Natural Language Processing(NLP)holds immense promise for revolutionizing data analytics and decision-making processes.Current techniques for personalized medicine,disease diagnosis,treatment recommendations,and resource optimization in the Internet of Medical Things(IoMT)vary widely,including methods such as rule-based systems,machine learning algorithms,and data-driven approaches.However,many of these techniques face limitations in accuracy,scalability,and adaptability to complex clinical scenarios.This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the IoMT.Through the integration of advanced data analytics methodologies with NLP capabilities,we propose a comprehensive framework designed to enhance personalized medicine,streamline disease diagnosis,provide treatment recommendations,and optimize resource allocation.Using a systematic methodology data was collected from open data repositories,then preprocessed using data cleaning,missing value imputation,feature engineering,and data normalization and scaling.Optimization algorithms,such as Gradient Descent,Adam Optimization,and Stochastic Gradient Descent,were employed in the framework to enhance model performance.These were integrated with NLP processes,including Text Preprocessing,Tokenization,and Sentiment Analysis to facilitate comprehensive analysis of the data to provide actionable insights from the vast streams of data generated by IoMT devices.Lastly,through a synthesis of existing research and real-world case studies,we demonstrated the impact of AI-NLP fusion on healthcare outcomes and operational efficiency.The simulation produced compelling results,achieving an average diagnostic accuracy of 93.5%for the given scenarios,and excelled even further in instances involving rare diseases,achieving an accuracy rate of 98%.With regard to patient-specific treatment plans it generated them with an average precision of 96.7%.Improvements in early risk stratification and enhanced documentation were also noted.Furthermore,the study addresses ethical considerations and challenges associated with deploying AI and NLP in healthcare decision-making processes,offering insights into risk-mitigating strategies.This research contributes to advancing the understanding of AI-driven optimization algorithms in healthcare data analytics,with implications for healthcare practitioners,researchers,and policymakers.By leveraging AI and NLP technologies in IoMT environments,this study paves the way for innovative strategies to enhance patient care and operational effectiveness.Ultimately,this work underscores the transformative potential of AI-NLP fusion in shaping the future of healthcare.
基金We are thankful for the funding support fromthe Science and Technology Projects of the National Archives Administration of China(Grant Number 2022-R-031)the Fundamental Research Funds for the Central Universities,Central China Normal University(Grant Number CCNU24CG014).
文摘As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models.
文摘Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
基金The authors are the awardees of the Indian Council of Social Science Research(ICSSR)Research Program(F.No.G-11/2021-22/ICSSR/RP)This paper is largely an outcome of the research program sponsored by the ICSSR.However,the responsibility for the facts stated,opinions expressed,and conclusions drawn is entirely that of the authors.
文摘Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,which makes it a burden for institutes and unaffordable for patients.This systematic literature review(SLR)focused on the various RAS training methods applied in different surgical specialties,as well as the cost elements of RAS,and was to summarize the opportunities and challenges associated with scaling up RAS.Methods An SLR was carried out based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses reporting guidelines.The PubMed,EBSCO,and Scopus databases were searched for reports from January 2018 through January 2024.Full-text reviews and research articles in the English language from Asia-Pacific countries were included.Articles that outlined training and costs associated with RAS were chosen.Results The most common training system is the da Vinci system.The simulation technique,which includes dry-lab,wet-lab,and virtual reality training,was found to be a common and important practice.The cost of RAS encompasses the installation and maintenance costs of the robotic system,the operation theatre rent,personnel cost,surgical instrument and material cost,and other miscellaneous charges.The synthesis of SLR revealed the challenges and opportunities regarding RAS training and cost.Conclusions The results of this SLR will help stakeholders such as decision-makers,influencers,and end users of RAS to understand the significance of training and cost in scaling up RAS from a managerial perspective.For any healthcare innovation to reach a vast population,cost-effectiveness and standard training are crucial.
文摘The medical metaverse and digital twin are set to revolutionise healthcare.Like all emerging technologies their benefits must be weighed against their ethical and social,impacts.If we consider the advances of medical technology as an expression of our values,such as the pursuit of knowledge,cures and healing,an ethical study allows us to align our values and steer the technology towards an agreed goal.However,to appreciate the long-term consequents of a technology,those consequences must be considered in the context of a society already shaped by that technology.This paper identifies the technologies currently shaping society and considers the ethical,and social consequences of the medical metaverse and digital twin in that future society.