Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the h...The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.展开更多
Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-trea...Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.展开更多
Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat tre...Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.展开更多
In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was t...In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker展开更多
AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatm...AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.展开更多
Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. ...Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.展开更多
In academic circles there are different views on question if existed heat-treatment technique for ancient bronze mirrors in China. On this question a series of simulating tests were carried out. By using quenching and...In academic circles there are different views on question if existed heat-treatment technique for ancient bronze mirrors in China. On this question a series of simulating tests were carried out. By using quenching and tempering the same structure as in ancient bronze mirrors was obtained, therefore, it was proved that Chinese ancient bronze mirrors underwent heat-treatment. Meanwhile the view that the tempered structure of bronze at high temperature is analogous to its quenched structure at high temperature was corrected.展开更多
Onion-like Fullerenes were produced at high-temperature in vacuum. The morphology of the carbon nano onion-like fullerenes was examined and characterized by high-resolution transmission electron microscopy (HRTEM). It...Onion-like Fullerenes were produced at high-temperature in vacuum. The morphology of the carbon nano onion-like fullerenes was examined and characterized by high-resolution transmission electron microscopy (HRTEM). It can be seen that the nano-sized, onion-like fullerenes possess high degree of graphization. The results suggested that the catalyst is the main factor affecting the size and yield of the fullerenes. The method is very promising for simple mass production.展开更多
Fatigue property of Al Li alloy after various heat treatment was investigated. The results show that the fatigue strength is enhanced with the age hardening progressing. Compared to the solution treated specimen, the ...Fatigue property of Al Li alloy after various heat treatment was investigated. The results show that the fatigue strength is enhanced with the age hardening progressing. Compared to the solution treated specimen, the fatigue limit is improved to 136% for sub ageing treated specimen and 155% for peak ageing treated specimen, respectively. In the meanwhile, the fatigue deformation becomes non uniform with age hardening progressing. The fatigue cracks initiate and propagate prior from the un uniform slip band, causing transgranular fracture or the mixed mode of transgranular fracture and intergranular fracture.展开更多
The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of s...The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.展开更多
The effects of solid solution and aging processing on the microstructures and mechanical properties of the multi-layer spray co-deposited 7090Al/SiCp composite were investigated. The experimented results show that fin...The effects of solid solution and aging processing on the microstructures and mechanical properties of the multi-layer spray co-deposited 7090Al/SiCp composite were investigated. The experimented results show that fine grains and homogeneous microstructures can be obtained,the average grain size of the as-solid solution treated and as-aged composites after extrusion is under 3.0 μm. A large amount of the Cu-rich phase particles form in the as-extruded samples,and solve into the matrix after solid solution treatment. After aging,the size of the precipitate phases,mainly MgZn2 and CuAl2 is less than 1.0 μm,which homogeneously distribute inside the grains and at the grain boundaries. The ultimate tensile strength of the composite treated at T6 state,i.e. solid solution treated at 475 ℃ for 1 h then aged at 120 ℃ for 24 h,is up to 765 MPa.展开更多
The influences of micro alloy and heat treatment procedure on the hardening of DJ108Ti alloy, which is based on the electrolytic Al Si(2 05%) Ti(0 25%) Fe(0 30%) multi component alloy, have been investigated...The influences of micro alloy and heat treatment procedure on the hardening of DJ108Ti alloy, which is based on the electrolytic Al Si(2 05%) Ti(0 25%) Fe(0 30%) multi component alloy, have been investigated. The results indicate that the micro alloy based on the multi component alloy makes α Al dendrites in DJ108Ti alloy refined; that the improved heat treatment procedure makes the eutectic Si phases granulated , the Fe phase refined, and the strengthening phases of Mg2Si and Al2Cu fully precipitated. The micro alloy and the heat treatment procedure harden DJ108Ti alloy and benefit the abrasion resistance of the alloy展开更多
The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the...The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the microcrystalline phase has been analyzed by XRD and SEM.The new glass phase La2ZrTiO7 produced by the reaction(Q=1800,τε=+500ppm/℃) is of great signality to the development of new microwave dielectric materials.The sample which was insulated at 750℃ for 35h with superior dielectric properties: εr=12.82,Q=1150,τε=-19.5ppm/℃.展开更多
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope(SKPFM) analysis. ...The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope(SKPFM) analysis. In long-term corrosion experiments, the corrosion rates of Mg-Gd-Zn-Zr alloys were mainly determined by the effects of micro-galvanic corrosion. During heat-treatment, the β-(Mg,Zn)3Gd eutectic phase in as-cast alloys transformed into a long-period stacking ordered(LPSO) phase, coupled with the precipitation of small precipitates. As heat-treatment proceeded, the local potential and the volume fraction of the LPSO phases reduced gradually compared with the eutectic phase, which resulted in a remarkable decrease of the micro-galvanic effect between the second phase and Mg matrix. As a result, the corrosion resistance of heat-treated alloys improved significantly.展开更多
The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstru...The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segregation was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni_3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxidation resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM asbuilt material at 1273K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni_3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.展开更多
Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile ...Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite-martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard- Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain- hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features.展开更多
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
基金Funded by the Basic Scientific Research of Central Colleges,Chang’an University (No. CHD2011JC126)
文摘The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2308,NY[2015]3027,[2020]1Y125 and[2019]2325)National Natural Science Foundation of China(No.31800481)Forestry Department Foundation of Guizhou Province of China(Nos.[2017]14,[2018]13).
文摘Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.
文摘Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.
文摘In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker
文摘AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.
文摘Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.
文摘In academic circles there are different views on question if existed heat-treatment technique for ancient bronze mirrors in China. On this question a series of simulating tests were carried out. By using quenching and tempering the same structure as in ancient bronze mirrors was obtained, therefore, it was proved that Chinese ancient bronze mirrors underwent heat-treatment. Meanwhile the view that the tempered structure of bronze at high temperature is analogous to its quenched structure at high temperature was corrected.
基金supported by National Natural Science Foundation(59871032,90306014)National Excellent Youth Foundation(50025103).
文摘Onion-like Fullerenes were produced at high-temperature in vacuum. The morphology of the carbon nano onion-like fullerenes was examined and characterized by high-resolution transmission electron microscopy (HRTEM). It can be seen that the nano-sized, onion-like fullerenes possess high degree of graphization. The results suggested that the catalyst is the main factor affecting the size and yield of the fullerenes. The method is very promising for simple mass production.
文摘Fatigue property of Al Li alloy after various heat treatment was investigated. The results show that the fatigue strength is enhanced with the age hardening progressing. Compared to the solution treated specimen, the fatigue limit is improved to 136% for sub ageing treated specimen and 155% for peak ageing treated specimen, respectively. In the meanwhile, the fatigue deformation becomes non uniform with age hardening progressing. The fatigue cracks initiate and propagate prior from the un uniform slip band, causing transgranular fracture or the mixed mode of transgranular fracture and intergranular fracture.
文摘The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.
基金Project(06FJ3041) supported by the Science and Technology Bureau of Hunan Province, China
文摘The effects of solid solution and aging processing on the microstructures and mechanical properties of the multi-layer spray co-deposited 7090Al/SiCp composite were investigated. The experimented results show that fine grains and homogeneous microstructures can be obtained,the average grain size of the as-solid solution treated and as-aged composites after extrusion is under 3.0 μm. A large amount of the Cu-rich phase particles form in the as-extruded samples,and solve into the matrix after solid solution treatment. After aging,the size of the precipitate phases,mainly MgZn2 and CuAl2 is less than 1.0 μm,which homogeneously distribute inside the grains and at the grain boundaries. The ultimate tensile strength of the composite treated at T6 state,i.e. solid solution treated at 475 ℃ for 1 h then aged at 120 ℃ for 24 h,is up to 765 MPa.
文摘The influences of micro alloy and heat treatment procedure on the hardening of DJ108Ti alloy, which is based on the electrolytic Al Si(2 05%) Ti(0 25%) Fe(0 30%) multi component alloy, have been investigated. The results indicate that the micro alloy based on the multi component alloy makes α Al dendrites in DJ108Ti alloy refined; that the improved heat treatment procedure makes the eutectic Si phases granulated , the Fe phase refined, and the strengthening phases of Mg2Si and Al2Cu fully precipitated. The micro alloy and the heat treatment procedure harden DJ108Ti alloy and benefit the abrasion resistance of the alloy
文摘The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the microcrystalline phase has been analyzed by XRD and SEM.The new glass phase La2ZrTiO7 produced by the reaction(Q=1800,τε=+500ppm/℃) is of great signality to the development of new microwave dielectric materials.The sample which was insulated at 750℃ for 35h with superior dielectric properties: εr=12.82,Q=1150,τε=-19.5ppm/℃.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
基金financial support from the National Natural Science Foundation of China (Nos. 51531007 and 51771050)the National program for the Young Top-notch Professionalsthe Fundamental Research Funds for the Central Universities (N170205002)
文摘The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope(SKPFM) analysis. In long-term corrosion experiments, the corrosion rates of Mg-Gd-Zn-Zr alloys were mainly determined by the effects of micro-galvanic corrosion. During heat-treatment, the β-(Mg,Zn)3Gd eutectic phase in as-cast alloys transformed into a long-period stacking ordered(LPSO) phase, coupled with the precipitation of small precipitates. As heat-treatment proceeded, the local potential and the volume fraction of the LPSO phases reduced gradually compared with the eutectic phase, which resulted in a remarkable decrease of the micro-galvanic effect between the second phase and Mg matrix. As a result, the corrosion resistance of heat-treated alloys improved significantly.
基金the Fundamental Research Program of the Korea Institute of Materials Science(Grant No.PNK5520)Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0002007,The Competency Development Program for Industry Specialist)。
文摘The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segregation was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni_3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxidation resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM asbuilt material at 1273K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni_3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.
基金financially supported by the National Key Project of Scientific and Technical Supporting Programs of China (No. 2011CB606306-2)the National Natural Science Foundation of China (Grant No. 51204048)
文摘Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure-property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite-martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard- Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain- hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features.