The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network wi...The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology.展开更多
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno...As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management.展开更多
The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always funct...The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data.展开更多
This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more ...This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.展开更多
The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov mode...The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.展开更多
The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and d...The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.展开更多
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use...A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.展开更多
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction ste...An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.展开更多
Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittan...Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittance spectral frequency (ISF) parameters in AMR-WB codec to optimally estimate the lost ISFs based on the minimum mean square error (MMSE) rule. The estimated ISFs are weighted with the ones of their previous neighbors to smooth the speech, resulting in the actual concealed ISF vectors. They are used instead of the lost ISFs in the speech synthesis on the receiver. Comparison is made between the speech concealed by this algorithm and by Annex I of G. 722. 2 specification, and simulation shows that the proposed concealment algorithm can lead to better performance in terms of frequency-weighted spectral distortion and signal-to-noise ratio compared to the baseline method, with an increase of 2.41 dB in signal-to-noise ratio (SNR) and a reduction of 0. 885 dB in frequency-weighted spectral distortion.展开更多
In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language proc...In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system.展开更多
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in...This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.展开更多
In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating acco...In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.展开更多
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur...Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.展开更多
Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroenceph...Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram(EEG) as a noninvasive procedure to record neuronal activities in the brain.EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals.Shannon entropy,collision entropy,transfer entropy,conditional probability,and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform.Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification.Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector.The accuracy of the proposed approach is higher for Q=2 and J=10.Transfer entropy is observed to be significant for different class combinations.Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time.The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals.The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.展开更多
Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultur...Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation.展开更多
With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo...With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.展开更多
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance...In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.展开更多
The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necess...The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.展开更多
This paper presents a method of tone recognition for Mandarin speech by using combination of wavelet transform and hidden Markov modeling techniques. A pitch detector based on singularity detection and multi-resolutio...This paper presents a method of tone recognition for Mandarin speech by using combination of wavelet transform and hidden Markov modeling techniques. A pitch detector based on singularity detection and multi-resolution analysis of wavelet transform is employed for estimation of pitch periods, and hidden Markov modeling with partition Gaussian mixtures probability density function is used for the tone recognition. The algorithm can provide recognition accuracy of 97.22% and 94.47% for speaker-dependent and speaker-independent tone recognition, respectively.展开更多
In this letter, we briefly describe a program of self adapting hidden Markov model (SA HMM) and its application in multiple sequences alignment. Program consists of two stage optimisation algorithm.
文摘The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology.
文摘As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management.
基金the National High Technology Research and Development Program(863) of China(No. 2006AA04A114)
文摘The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data.
文摘This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach.
基金The Weaponry Equipment Foundation of PLA Equipment Ministry (No51406020105JB8103)
文摘The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.
文摘The use of hidden conditional random fields (HCRFs) for tone modeling is explored. The tone recognition performance is improved using HCRFs by taking advantage of intra-syllable dynamic, inter-syllable dynamic and duration features. When the tone model is integrated into continuous speech recognition, the discriminative model weight training (DMWT) is proposed. Acoustic and tone scores are scaled by model weights discriminatively trained by the minimum phone error (MPE) criterion. Two schemes of weight training are evaluated and a smoothing technique is used to make training robust to overtraining problem. Experiments show that the accuracies of tone recognition and large vocabulary continuous speech recognition (LVCSR) can be improved by the HCRFs based tone model. Compared with the global weight scheme, continuous speech recognition can be improved by the discriminative trained weight combinations.
文摘A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two.
基金Supported by National High-Tech Program of China (No. 2001AA413110).
文摘An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.
基金The Science Foundation of Southeast University(No.XJ0704268)the Natural Science Foundation of the Education Department of Anhui Province(No.KJ2007B088)
文摘Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittance spectral frequency (ISF) parameters in AMR-WB codec to optimally estimate the lost ISFs based on the minimum mean square error (MMSE) rule. The estimated ISFs are weighted with the ones of their previous neighbors to smooth the speech, resulting in the actual concealed ISF vectors. They are used instead of the lost ISFs in the speech synthesis on the receiver. Comparison is made between the speech concealed by this algorithm and by Annex I of G. 722. 2 specification, and simulation shows that the proposed concealment algorithm can lead to better performance in terms of frequency-weighted spectral distortion and signal-to-noise ratio compared to the baseline method, with an increase of 2.41 dB in signal-to-noise ratio (SNR) and a reduction of 0. 885 dB in frequency-weighted spectral distortion.
基金Project(60763001)supported by the National Natural Science Foundation of ChinaProjects(2009GZS0027,2010GZS0072)supported by the Natural Science Foundation of Jiangxi Province,China
文摘In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system.
基金Supported by the Science and Technology Development Project Foundation of Tianjin (033800611, 05YFGZGX24200)
文摘This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.
基金supported by the National Natural Science Foundation of China(11101451)Ph.D.Programs Foundation of Ministry of Education of China(20110191110033)
文摘In the present paper, we consider a kind of semi-Markov risk model (SMRM) with constant interest force and heavy-tailed claims~ in which the claim rates and sizes are conditionally independent, both fluctuating according to the state of the risk business. First, we derive a matrix integro-differential equation satisfied by the survival probabilities. Second, we analyze the asymptotic behaviors of ruin probabilities in a two-state SMRM with special claim amounts. It is shown that the asymptotic behaviors of ruin probabilities depend only on the state 2 with heavy-tailed claim amounts, not on the state 1 with exponential claim sizes.
基金This project is supported by National Natural Science Foundation of China(No.50375153).
文摘Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.
文摘Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram(EEG) as a noninvasive procedure to record neuronal activities in the brain.EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals.Shannon entropy,collision entropy,transfer entropy,conditional probability,and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform.Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification.Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector.The accuracy of the proposed approach is higher for Q=2 and J=10.Transfer entropy is observed to be significant for different class combinations.Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time.The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals.The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.
基金support provided from the Cooperative Education Fund of China Ministry of Education(201702113002 and 201801193119)Hunan Natural Science Foundation(2018JJ2138)Degree and Graduate Education Reform Project of Hunan Province(JG2018B096)are greatly appreciated by the authors.
文摘Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation.
基金This study was funded by the National Natural Science Foundation of China(Grant No.41975027)the Natural Science Foundation of Jiangsu Province(Grant No.BK20171457)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disasters(Grant No.2017YFC1501401).
文摘With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients.
文摘In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.
基金supported by the National Natural Science Foundation of China under Grant No.60672184
文摘The vibration signals of an aeroengine are a very important information source for fault diagnosis and condition monitoring. Considering the nonstationarity and low repeatability of the vibration signals, it is necessary to find a corresponding method for feature extraction and fault recognition. In this paper, based on Independent Component Analysis (ICA) and the Discrete Hidden Markov Model (DHMM), a new fault diagnosis approach named ICA-DHMM is proposed. In this method, ICA separates the source signals from the mixed vibration signals and then extracts features from them, DHMM works as a classifier to recognize the conditions of the aeroengine. Compared with the DHMM, which use the amplitude spectrum of mixed signals as feature parameters, experimental results show this method has higher diagnosis accuracy.
基金Supported by the National Natural Science Foundatiuon of China
文摘This paper presents a method of tone recognition for Mandarin speech by using combination of wavelet transform and hidden Markov modeling techniques. A pitch detector based on singularity detection and multi-resolution analysis of wavelet transform is employed for estimation of pitch periods, and hidden Markov modeling with partition Gaussian mixtures probability density function is used for the tone recognition. The algorithm can provide recognition accuracy of 97.22% and 94.47% for speaker-dependent and speaker-independent tone recognition, respectively.
文摘In this letter, we briefly describe a program of self adapting hidden Markov model (SA HMM) and its application in multiple sequences alignment. Program consists of two stage optimisation algorithm.