Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising...Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising applications in extreme environments.The wear behavior and mechanism were systemati-cally investigated from room temperature(RT)to 750℃.The results show that the wear rate increases from∼2.65×10^(-6)mm^(3)N^(-1)m^(-1)to∼10.56×10^(-6)mm^(3)N^(-1)m^(-1)in the temperature span RT to 400℃,following abrasive wear and flash temperature-induced oxidative wear during the friction.However,at the higher temperature of 600℃,further heating due to frictional heat leads to a softening of the wear surface,resulting in a maximum wear rate of∼20.99×10^(-6)mm^(3)N^(-1)m^(-1)under softness-driven abrasive wear as well as oxidative wear.Interestingly,the wear resistance at an even higher temperature of 750℃shows a paradoxical improvement of∼7.08×10^(-6)mm^(3)N^(-1)m^(-1),which is attributed to the formation of an oxide layer with a thickness of several microns,avoiding violent wear of BMG.The re-sults demonstrate the unreported outstanding high-temperature wear resistance of the Ir-Ta-Ni-Nb BMG,especially its excellent capability to resist wear at 750℃,leading to the promising applications of BMG in the fields of aerospace,metallurgy,and nuclear industries.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s...A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.展开更多
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive...Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-...In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.展开更多
FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property...FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...展开更多
In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack...In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing para...The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.展开更多
Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-Si...Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.展开更多
The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4...The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.展开更多
WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microst...WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.展开更多
High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ...High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.展开更多
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t...Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.展开更多
Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power ...Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.展开更多
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFA0703605)the Key Basic and Applied Research Pro-gram of Guangdong Province,China(Grant No.2019B030302010)+1 种基金the NSF of China(Grant No.52122105,51971150)the Science and Technology Innovation Commission Shenzhen(Grants No.RCJC20221008092730037,20220804091920001)。
文摘Wear resistance is a critical consideration in engineering applications.In this study,we demonstrated an Ir-Ta-Ni-Nb bulk metallic glass(BMG)with outstanding high-temperature wear resistance and revealed its promising applications in extreme environments.The wear behavior and mechanism were systemati-cally investigated from room temperature(RT)to 750℃.The results show that the wear rate increases from∼2.65×10^(-6)mm^(3)N^(-1)m^(-1)to∼10.56×10^(-6)mm^(3)N^(-1)m^(-1)in the temperature span RT to 400℃,following abrasive wear and flash temperature-induced oxidative wear during the friction.However,at the higher temperature of 600℃,further heating due to frictional heat leads to a softening of the wear surface,resulting in a maximum wear rate of∼20.99×10^(-6)mm^(3)N^(-1)m^(-1)under softness-driven abrasive wear as well as oxidative wear.Interestingly,the wear resistance at an even higher temperature of 750℃shows a paradoxical improvement of∼7.08×10^(-6)mm^(3)N^(-1)m^(-1),which is attributed to the formation of an oxide layer with a thickness of several microns,avoiding violent wear of BMG.The re-sults demonstrate the unreported outstanding high-temperature wear resistance of the Ir-Ta-Ni-Nb BMG,especially its excellent capability to resist wear at 750℃,leading to the promising applications of BMG in the fields of aerospace,metallurgy,and nuclear industries.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金supported by the National Natural Science Foundation of China(Nos.52071346,52111530193,and 52274387)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(No.2023JJ10075)+3 种基金the Hunan Provincial Natural Science Foundation of China(No.2021JJ30846)the Central South University Research Program of Advanced Interdisciplinary Studies(No.2023QYJC038)the Funding for the Medical Engineering Cross Disciplinary Project at Shanghai Jiao Tong University,and the Fundamental Research Funds for the Central Universities of Central South University(No.2022ZZTS0402)The authors would also thank Sinoma Institute of Materials Research(Guangzhou)Co.,Ltd.for the assistance with the TEM characterization.
文摘A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.
基金Funded by the National Natural Science Foundation of China(No.50678050)
文摘Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Project(20080440850) supported by China Postdoctoral Science FoundationProject(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(HIT.NSRIF.2012002) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.
基金supported by the National Natural Science Foundation of China (50575034)
文摘FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...
基金Projects(YKJ201203,CKJB201205)supported by the Nanjing Institute of Technology,China
文摘In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.
基金Project(11ZR1417500) supported by Natural Science Foundation of Shanghai,China
文摘The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.
基金The project was supported by Yunnan Provincial Natural Science Foundation (95B11-5).
文摘Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.
基金financially supported by the Ocean Public Science and Technology Research Fund Projects of China (No. 201405013-3)the Science & Technology Program of Shanghai Maritime University (No. 20130448)+1 种基金the China Postdoctoral Science Foundation (No. 2017M620153)the National Natural Science Foundation of China (No. 51609133)
文摘The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.
基金supported by the Science and Technology Projects of Sichuan Province, China (No. 2008GZ0179)
文摘WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2013BAF01B01)
文摘High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.
基金Financial assistance from Armament Research Board, New Delhi, India
文摘Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.
基金Item Sponsored by Research Programof Anhui Science and Technology Office (2005KJ030) and Korea Research FoundationGrant (KRF-2004-005-D00096)
文摘Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.