The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notc...The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.展开更多
In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue in...In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.展开更多
基金the National Natural Science Foundation of China (Nos.10132010 and 10072033).
文摘The higher order asymptotic fields at the tip of a sharp V-notchin a power-hardening material for plane strain problem of Mode I arederived. The order hierarchy in powers of r for various hardeningexponents n and notch angles β is obtained. The angulardistributions of stress for several cases are plotted. Theself-similarity behavior between the higher order terms is noticed.It is found that the terms with higher Order can be neglected for theV-notch angle β>45°.
基金supported by the National Natural Science Foundation of China(Grant No.90816024)Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)111 Project(Grant No.B07009)
文摘In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.