Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an examp...Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.展开更多
Understanding the characteristics of the structure of desert atmospheric boundary layer and its land surface process is of great importance to the simulations of regional weather and climate. To investigate the atmosp...Understanding the characteristics of the structure of desert atmospheric boundary layer and its land surface process is of great importance to the simulations of regional weather and climate. To investigate the atmospheric boundary layer structure and its forming mechanism of Taklimakan Desert, and to improve the accuracy and precision of regional weather and climate simulations, we carried out a GPS radiosonde observation experiment in the hinterland of Taklimakan Desert from 25 June to 3 July, 2015. Utilizing the densely observed sounding data, we analyzed the vertical structures of daytime convective boundary layer and nighttime stable boundary layer in summer over this region, and also discussed the impacts of sand-dust and precipitation events on the desert atmospheric boundary layer structure. In summer, the convective boundary layer in the hinterland of Taklimakan Desert developed profoundly and its maximum height could achieve 4,000 m; the stable boundary layer at nighttime was about 400-800-m thick and the residual mixing layer above it could achieve a thickness over 3,000 m. Sand-dust weather would damage the structures of nighttime stable boundary layer and daytime convective boundary layer, and the dust particle swarm can weak the solar radiation absorbed by the ground surface and further restrain the strong development of convective boundary layer in the daytime. Severe convective precipitation process can change the heat from the ground surface to the atmosphere in a very short time, and similarly can damage the structure of desert atmospheric boundary layer remarkably. Moreover, the height of atmospheric boundary layer was very low when raining. Our study verified the phenomenon that the atmospheric boundary layer with supernormal thickness exists over Taklimakan Desert in summer, which could provide a reference and scientific bases for the regional numerical models to better represent the desert atmospheric boundary layer structure.展开更多
Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it i...Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure facies belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currenffy discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies- potential index FPI〉0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon- bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone.展开更多
In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources ...In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.展开更多
The Asmari Formation is a thick carbonate sequence of the Oligocene-Miocene in the Zagros Basin, southwest of Iran. This formation is located in Bandar Abbas and Coastal Fars regions on the following two sections: Ang...The Asmari Formation is a thick carbonate sequence of the Oligocene-Miocene in the Zagros Basin, southwest of Iran. This formation is located in Bandar Abbas and Coastal Fars regions on the following two sections: Anguro anticline (west-northwest of Bandar Abbas) and Gavbast anticline (southwest of Lar County). The Asmari Formation has diameters of 68 and 26 m in the Anguro and Gavbast sections, respectively. This formation is composed of limestone, dolomitic limestone and an altered form of marl. Based on the results of petrographic analyses, 7 facies were identified in the Anguro and Gavbast sections in the study region. The facies were deposited on the following 3 belts: tidal flat (MF 1 - 3), lagoon (MF 4 - 5) and open marine (MF 6, 7). According to evidence such as the gradual change of microfacies, the lack of main reef barriers, and the lack of slumping and sliding features, the Asmari Formation was formed in a marine environment of carbonate homoclinal ramp type. This environment is composed of the following two subenvironments: the inner ramp and the middle ramp. The comparison of the facies identified in the Anguro and Gavbast sections indicates that Gavbast section is mainly composed of lagoon facies. Moreover, the Anguro section demonstrates more facies diversity than Gavbast section.展开更多
Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of det...Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of determining the freight flow quantity, the transportation mode in each transit corridor while satisfying the freight demand at each West Africa transit country (Mali, Burkina Faso and Niger). The objective was to minimize in land transportation costs. In order to solve optimally and represent the problem, this research employed a linear programming model. The model was solved using Lingo Mathematic Application. The model results showed that port oriented freight logistics in west Africa ECOWAS region do not flow along optimal path and such incur longer time and higher logistics cost than is geographically necessary.展开更多
Efficient and effective movement of goods is very critical in today’s competitive environment especially for developing countries suffering from crippling logistics costs which limit their competitive ability in the ...Efficient and effective movement of goods is very critical in today’s competitive environment especially for developing countries suffering from crippling logistics costs which limit their competitive ability in the global economy. Putting in place an optimal logistics network design offers great potential for logistics cost reduction and service quality improvement [1]. Therefore, this paper presents a model for effective integration of inland intermodal terminal into logistics network. The model simultaneously determines the number and location of inland terminals in network that minimize the total cost of freight flow to hinterland. The model uses Abidjan port in Cote d’Ivoire as the case study for solving numeric examples. The problem will be formulated in the case of a rail-road network where post-routing is done by road and rail link between terminal. We present a linear optimization model which is implemented using LINGO Mathematical Modeling Language.展开更多
A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the ...A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the event took place 133-117 Ma ago (Yanshanian). Contemporaneously, a southwestwardthrust-type ductile shearing at multiple levels occurred in the lower crust or at even deeper levels, suggestingthat the Dabie Mountains region was still under the influence ot strong continent-continent overlappingtectonism of the Yangtze block under the Sino-Korean block at depth. Metamorphic rocks of amphibolitefacies, migmatites and deep structural deformations resulting from this tectonothermal event are now exposedto the surface. The present features of the Dabie Mountains thus have appeared only since ca. 100 Ma B.P. Theblock composed of the Dabie Group is not an uplift or shield which would have undergone a long-continuederosion.展开更多
The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and opt...The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and optimization of all relevant processes.Innovative technologies and business processes are therefore useful and needed to achieve key steps on the way to an overall optimization of rail transport within global supply chains.A substantial part of the European rail freight transport has its origin or its destination in an inland or sea port.Considering the railway system,ports play a more important role for urgently needed innovations than the pure interfaces between sea and land transport.Especially ports with their own railway system have an own responsibility in this matter.Insofar the goal of the Bremen Port Railway—which already now has a leading share of railway in modal split in Europe—is to exploit the opportunities offered by digitalization.Significant steps for this are the optimization and gradually automatization of rail operational processes on the last mile including modern and transparent IT systems and the designing of autonomous shunting processes.Together with research partners ISL(Institute of Shipping Economics and Logistics Bremen),BIBA(Bremen Institute for Production and Logistics)and IVE(Institute for Transport,Railway Construction and Operation in Brunswick)and in connection with associated business partners the project Rang-E has been applied for at the Ministry of Transport in the funding initiative IHATEC(Innovated HArbour TEChnologies)—and had won a grant to perform the proposed work.Basic thoughts are outlined in the following.展开更多
EDITOR'S NOTE:The author wasblessed with a rarechance to be with31 Living Buddhas,kampo abbots andsutra teaches-hail-ing from Tibet andthe areas inhabitedby the Tibetans inSichuan,Qinghai,Gansu and YunnanProvince...EDITOR'S NOTE:The author wasblessed with a rarechance to be with31 Living Buddhas,kampo abbots andsutra teaches-hail-ing from Tibet andthe areas inhabitedby the Tibetans inSichuan,Qinghai,Gansu and YunnanProvinces,andrecorded the follow-ing stories.展开更多
The EC analysis and water serial sampling was performed in the Tarim Desert Highway shelterbelt to explore the water and salt dynamics of the shallow aeolian sandy soil ( 0-30cm) under high salinity groundwater drip i...The EC analysis and water serial sampling was performed in the Tarim Desert Highway shelterbelt to explore the water and salt dynamics of the shallow aeolian sandy soil ( 0-30cm) under high salinity groundwater drip irrigation. It was found that in one irrigation cycle, the EC of the shallow shifting aeolian sandy soil ( 0-30cm) increased while the water content decreased. The EC of the surface aeolian sandy soil at the wetting front was far greater than that of the wetting area or the outside of the wetting area. During the irrigation cycle, the EC of the wetting front and the wetting area changed at a significant magnitude, whereas the EC of the outside of the wetting area remained largely steady. The horizontal influence distance of drip irrigation on the salt accumulation at the soil surface was about 100 cm, and the vertical influence depth was 5 cm. The three most abundant ions in the accumulated salt at the aeolian sandy soil surface were Na+, Cl- and SO42-. The salt accumulation at the soil surface was influenced by air temperature, wind speed, mineralization of irrigation water, sand burial thickness, soil texture, and litter content.展开更多
This study was the first to conduct high-resolution consecutive detection of clouds over the hinterland of the Taklimakan Desert(TD)from April to June 2018 based on a ground-based Ka-band millimeter-wave cloud radar(M...This study was the first to conduct high-resolution consecutive detection of clouds over the hinterland of the Taklimakan Desert(TD)from April to June 2018 based on a ground-based Ka-band millimeter-wave cloud radar(MMCR),with focus on the structure and evolution of the desert clouds.We calculated reflectivity factor(Z),cloud boundary,and liquid water content(LWC)by use of the MMCR power spectrum data,which were verified against the observations from cloud profile radar(CPR)on board Cloud Sat.The results show that the TD clouds were mostly medium and high clouds,with thickness generally less than 2 km;moreover,the mean LWCs of these clouds were less than 0.01 gm^(-3),implying that cirrus and stratiform clouds were predominant.For the observed low clouds,however,the average thickness was 3166 m and accompanying drizzles were concentrated within 2.5-4.5 km,indicating that precipitation was more likely to occur in the low clouds.The mean LWC in the TD clouds was 0.0196 gm^(-3),less than that of clean clouds.Compared to other periods,the average durations and LWCs in the TD clouds increased significantly around noon owing to obvious surface sensible heating.The average time for evolution of high clouds into low clouds was approximately 2 h,and the average maximum LWC increased from 0.008 to 0.139 gm;.The results obtained herein provide a key reference for further studies of the structure and evolution characteristics of the desert clouds.展开更多
Microscopic to mesoscopic structural investigations and foliation intersection axes(FIAs) preserved in porphyroblasts reveal a very complex history of deformation and tectonism within the southwestern part of the we...Microscopic to mesoscopic structural investigations and foliation intersection axes(FIAs) preserved in porphyroblasts reveal a very complex history of deformation and tectonism within the southwestern part of the western hinterland zone along the northern margin of the Indian plate, NW Pakistan. D_1, D_2, and D_3 related structures in the southwestern part resemble the F_1/F_2, F_3, and F_4 related structures in the northeastern part of the western hinterland zone. These structures developed at the same time through the same changes in the direction of bulk shortening in southwestern and northeastern parts of the western hinterland zone. FIA set 1 indicates NW-SE shortening. The D_2 fabrics, mineral lineations and fold axes indicate E-W shortening. FIA set 2, D_3 fold axes and mineral lineations indicate NNE-SSW shortening. D_3 deformation event is equivalent to the F_4 deformation event in the northeastern part of the western hinterland zone. D_4 fold axes, mineral stretching lineations and axial plane foliation suggest ENE-WSW shortening. The D_4 NNW-SSE fabrics, which formed in the region after the formation of the MMT(main mantle thrust), Khairabad-Panjal thrust fault, Hissartang thrust fault and MBT(main boundary thrust), likely resulted from ENE-WSW bulk shortening related to development of the Hazara-Kashmir syntaxis.展开更多
To eliminate the long-term threat to the northern and northwestern territories imposed by Huns in 138 B.C.,Liu Che,the Emperor of the Han Dynasty,sent Zhang Qian to go to Xiyu(the wild-west region)and tried to ally wi...To eliminate the long-term threat to the northern and northwestern territories imposed by Huns in 138 B.C.,Liu Che,the Emperor of the Han Dynasty,sent Zhang Qian to go to Xiyu(the wild-west region)and tried to ally with Great Yüeh-chin,Huns’sworn enemy,so as to attack Huns from both east and west sides.As long as 13 years of his reign,Zhang Qian was captured and detained by the Huns twice,but he escaped successfully each time.He reached the regions known today as Uzbekistan,Kazakhstan and north of Afghanistan and some other places with thousands of miles journey.In 126 B.C.,Zhang Qian came back to Chang-An,the capital of the Han Dynasty.Unfortunately,only one person Tang Yifu out of over 100 members in the diplomatic team survived and returned with him.Of course,the diplomatic mission of allying Great Yüeh-chin was not fulfilled.However,Zhang Qian’s expedition to the West Regions was still of great importance.It is based on his geographic,cultural and social knowledge about the West Region that the continuous military actions initiated by the Emperor Liu Che of the Han Dynasty succeeded finally.What’s more,Zhang Qian’s Expedition to the West Regions accelerated the cultural and economic exchanges between the East and the West,which influenced the development process of world history of civilization directly and continually(Fan,1964:86-89).Today,there is no immediate military threat to China’s northwest and north,while it is convenient for China to connect quickly with other countries and regions by the development of transport and communication technologies.Particularly,the acceleration of the globalization and innovation of the internet technology has even linked the most remote areas of China with the world.However,the geo-political factors in the hinterlands of the Eurasian continent still significantly exert impact on China’s security and development.Therefore,it is very necessary for China to make another and even more significant and extensive“Expedition to the West Regions”-to strategically approach the Greater Middle East through the hinterland.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.41930646)Guangdong Natural Science Foundation(No.2022A1515011572)。
文摘Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.
基金supported by the National Natural Science Foundation of China(41575008,41305035)the Project for Public Good Dedicated to the Meteorological Sector in China(GYHY201406001)
文摘Understanding the characteristics of the structure of desert atmospheric boundary layer and its land surface process is of great importance to the simulations of regional weather and climate. To investigate the atmospheric boundary layer structure and its forming mechanism of Taklimakan Desert, and to improve the accuracy and precision of regional weather and climate simulations, we carried out a GPS radiosonde observation experiment in the hinterland of Taklimakan Desert from 25 June to 3 July, 2015. Utilizing the densely observed sounding data, we analyzed the vertical structures of daytime convective boundary layer and nighttime stable boundary layer in summer over this region, and also discussed the impacts of sand-dust and precipitation events on the desert atmospheric boundary layer structure. In summer, the convective boundary layer in the hinterland of Taklimakan Desert developed profoundly and its maximum height could achieve 4,000 m; the stable boundary layer at nighttime was about 400-800-m thick and the residual mixing layer above it could achieve a thickness over 3,000 m. Sand-dust weather would damage the structures of nighttime stable boundary layer and daytime convective boundary layer, and the dust particle swarm can weak the solar radiation absorbed by the ground surface and further restrain the strong development of convective boundary layer in the daytime. Severe convective precipitation process can change the heat from the ground surface to the atmosphere in a very short time, and similarly can damage the structure of desert atmospheric boundary layer remarkably. Moreover, the height of atmospheric boundary layer was very low when raining. Our study verified the phenomenon that the atmospheric boundary layer with supernormal thickness exists over Taklimakan Desert in summer, which could provide a reference and scientific bases for the regional numerical models to better represent the desert atmospheric boundary layer structure.
基金funded by the China 973 Key Foundation Research Development Project(Grant No. 2001CB209108)China National Natural Science Foundation Program(Grant No.40802029)
文摘Exploration practices show that the Jurassic System in the hinterland region of the Junggar Basin has a low degree of exploration but huge potential, however the oil/gas accumulation rule is very complicated, and it is difficult to predict hydrocarbon-bearing properties. The research indicates that the oil and gas is controlled by structure facies belt and sedimentary system distribution macroscopically, and hydrocarbon-bearing properties of sand bodies are controlled by lithofacies and petrophysical facies microscopically. Controlled by ancient and current tectonic frameworks, most of the discovered oil and gas are distributed in the delta front sedimentary system of a palaeo-tectonic belt and an ancient slope belt. Subaqueous branch channels and estuary dams mainly with medium and fine sandstone are the main reservoirs and oil production layers, and sand bodies of high porosity and high permeability have good hydrocarbon-bearing properties; the facies controlling effect shows a reservoir controlling geologic model of relatively high porosity and permeability. The hydrocarbon distribution is also controlled by relatively low potential energy at the high points of local structure macroscopically, while most of the successful wells are distributed at the high points of local structure, and the hydrocarbon-bearing property is good at the place of relatively low potential energy; the hydrocarbon distribution is in close connection with faults, and the reservoirs near the fault in the region of relatively low pressure have good oil and gas shows; the distribution of lithologic reservoirs at the depression slope is controlled by the distribution of sand bodies at positions of relatively high porosity and permeability. The formation of the reservoir of the Jurassic in the Junggar Basin shows characteristics of favorable facies and low-potential coupling control, and among the currenffy discovered reservoirs and industrial hydrocarbon production wells, more than 90% are developed within the scope of facies- potential index FPI〉0.5, while the FPI and oil saturation of the discovered reservoir and unascertained traps have relatively good linear correlation. By establishing the relation model between hydrocarbon- bearing properties of traps and FPI, totally 43 favorable targets are predicted in four main target series of strata and mainly distributed in the Badaowan Formation and the Sangonghe Formation, and the most favorable targets include the north and east of the Shinan Sag, the middle and south of the Mobei Uplift, Cai-35 well area of the Cainan Oilfield, and North-74 well area of the Zhangbei fault-fold zone.
基金supported by the National Basic Research Program in China (2006CB202300)
文摘In the hinterland of the Junggar Basin, there are multiple depressions with multiple sets of source rocks. Therefore, the conditions of hydrocarbon sources are complex, and the geochemical characteristics and sources of hydrocarbon vary in different structural belts. The evolution of the Che- Mo palaeohigh affected the formation of hydrocarbon source kitchens and hydrocarbon migration. We studied the combination and superimposition of hydrocarbon source kitchens, using as an example the hinterland of the Junggar Basin (including the Yongjin, Zhengshacun, Moxizhuang and Luliang uplift areas). The study was based on geochemical analyses of crude oil and fluid inclusions, and the histories of tectonic evolution and hydrocarbon generation. The results indicated that before the Paleogene there were two hydrocarbon-generating depressions: the Western Well Penl depression and the Changji depression on the south and north sides of the Che-Mo palaeohigh, respectively. The Permian source kitchen had been generating hydrocarbon continuously since Triassic and reached high maturity stage in the Cretaceous period. After Paleogene, the adjustment of the Che-Mo palaeohigh led to the subsidence of the Changji depression and the Jurassic source rocks reached mature stage and became the main source kitchens. However, the Jurassic source rocks in the Western Well Penl depression were still in a low maturity stage and did not generate oil because of the adjustment of tectonic movements. As a result, in the central and southern parts of the Junggar Basin, Jurassic source rocks generated oil, but in the Luliang uplift, the crude oil was from the Permian source rocks in the Western Well Penl depression and the Jurassic source rocks did not contribute. The crude oil in the central Zhengshacun-Moxizhuang belt was from the Permian source rocks in two depressions, and partially from the Jurassic source rocks. The crude oil in the Luliang uplift was from the source rocks of the lower Permian Fengcheng Formation and middle Permian Wuerhe Formation, which is characterized by superimposition of two sets of source kitchens and three accumulation stages. The crude oil in the Yongjin tectonic belt was from the lower Permian, middle Permian and Jurassic source rocks, which is characterized by superimposition of three sets of source kitchens and two accumulation stages. The crude oil in the Zhengshacun tectonic belt was from a combination of source kitchens of lower Permian and middle Permian in the Western Well Penl depression in the early stage and from the superimposition of Jurassic source rocks in the Changji depression in the late stage.
文摘The Asmari Formation is a thick carbonate sequence of the Oligocene-Miocene in the Zagros Basin, southwest of Iran. This formation is located in Bandar Abbas and Coastal Fars regions on the following two sections: Anguro anticline (west-northwest of Bandar Abbas) and Gavbast anticline (southwest of Lar County). The Asmari Formation has diameters of 68 and 26 m in the Anguro and Gavbast sections, respectively. This formation is composed of limestone, dolomitic limestone and an altered form of marl. Based on the results of petrographic analyses, 7 facies were identified in the Anguro and Gavbast sections in the study region. The facies were deposited on the following 3 belts: tidal flat (MF 1 - 3), lagoon (MF 4 - 5) and open marine (MF 6, 7). According to evidence such as the gradual change of microfacies, the lack of main reef barriers, and the lack of slumping and sliding features, the Asmari Formation was formed in a marine environment of carbonate homoclinal ramp type. This environment is composed of the following two subenvironments: the inner ramp and the middle ramp. The comparison of the facies identified in the Anguro and Gavbast sections indicates that Gavbast section is mainly composed of lagoon facies. Moreover, the Anguro section demonstrates more facies diversity than Gavbast section.
文摘Major problem considered in this study was the intermodal routing problem of regional freight transportation in West Africa ECOWAS (Economic Community Of West Africa States), which can be defined as the problem of determining the freight flow quantity, the transportation mode in each transit corridor while satisfying the freight demand at each West Africa transit country (Mali, Burkina Faso and Niger). The objective was to minimize in land transportation costs. In order to solve optimally and represent the problem, this research employed a linear programming model. The model was solved using Lingo Mathematic Application. The model results showed that port oriented freight logistics in west Africa ECOWAS region do not flow along optimal path and such incur longer time and higher logistics cost than is geographically necessary.
文摘Efficient and effective movement of goods is very critical in today’s competitive environment especially for developing countries suffering from crippling logistics costs which limit their competitive ability in the global economy. Putting in place an optimal logistics network design offers great potential for logistics cost reduction and service quality improvement [1]. Therefore, this paper presents a model for effective integration of inland intermodal terminal into logistics network. The model simultaneously determines the number and location of inland terminals in network that minimize the total cost of freight flow to hinterland. The model uses Abidjan port in Cote d’Ivoire as the case study for solving numeric examples. The problem will be formulated in the case of a rail-road network where post-routing is done by road and rail link between terminal. We present a linear optimization model which is implemented using LINGO Mathematical Modeling Language.
基金This paper is one of results of the project"Tectono-Magmatic Evolution of the Southern Margin of the Sino-Korean Paraplatform and Their Relationship to Oil and Gas-bearing Basins in Southern North China"(1989).
文摘A strong tectono-magmatic thermal event has been revealed by field observations of granitic, migmatiticand metamorphic rocks in the hinterland of the Dabie Mountains. K-Ar, Ar-Ar and Rb-Sr determinationsshow that the event took place 133-117 Ma ago (Yanshanian). Contemporaneously, a southwestwardthrust-type ductile shearing at multiple levels occurred in the lower crust or at even deeper levels, suggestingthat the Dabie Mountains region was still under the influence ot strong continent-continent overlappingtectonism of the Yangtze block under the Sino-Korean block at depth. Metamorphic rocks of amphibolitefacies, migmatites and deep structural deformations resulting from this tectonothermal event are now exposedto the surface. The present features of the Dabie Mountains thus have appeared only since ca. 100 Ma B.P. Theblock composed of the Dabie Group is not an uplift or shield which would have undergone a long-continuederosion.
文摘The port railway operation in Germany and Europe is not least due to its long history of technological and regulatory developments characterized by a high number of players and a lack of comprehensive planning and optimization of all relevant processes.Innovative technologies and business processes are therefore useful and needed to achieve key steps on the way to an overall optimization of rail transport within global supply chains.A substantial part of the European rail freight transport has its origin or its destination in an inland or sea port.Considering the railway system,ports play a more important role for urgently needed innovations than the pure interfaces between sea and land transport.Especially ports with their own railway system have an own responsibility in this matter.Insofar the goal of the Bremen Port Railway—which already now has a leading share of railway in modal split in Europe—is to exploit the opportunities offered by digitalization.Significant steps for this are the optimization and gradually automatization of rail operational processes on the last mile including modern and transparent IT systems and the designing of autonomous shunting processes.Together with research partners ISL(Institute of Shipping Economics and Logistics Bremen),BIBA(Bremen Institute for Production and Logistics)and IVE(Institute for Transport,Railway Construction and Operation in Brunswick)and in connection with associated business partners the project Rang-E has been applied for at the Ministry of Transport in the funding initiative IHATEC(Innovated HArbour TEChnologies)—and had won a grant to perform the proposed work.Basic thoughts are outlined in the following.
文摘EDITOR'S NOTE:The author wasblessed with a rarechance to be with31 Living Buddhas,kampo abbots andsutra teaches-hail-ing from Tibet andthe areas inhabitedby the Tibetans inSichuan,Qinghai,Gansu and YunnanProvinces,andrecorded the follow-ing stories.
基金Supported by Major Orientation Foundation of the CAS Innovation Program (Grant No. KZCX3-SW-342)CAS Action-Plan for West Development (Grant No. KZCX2-XB2-13)+3 种基金Major Scientific and Technological Special of Xinjiang Uygur Autonomous Region (Grant No. 200733144-3)National Natural Science Foundation of China (Grant No. 40701098)the research projects of the Tarim Branch of Petro-China Company Limited (Grant Nos. 971008090016 and 971008090017)CAS Xinjiang Institute of Ecology and Geography "Dr. Talent" Project of Oasis Scholars Training Plan
文摘The EC analysis and water serial sampling was performed in the Tarim Desert Highway shelterbelt to explore the water and salt dynamics of the shallow aeolian sandy soil ( 0-30cm) under high salinity groundwater drip irrigation. It was found that in one irrigation cycle, the EC of the shallow shifting aeolian sandy soil ( 0-30cm) increased while the water content decreased. The EC of the surface aeolian sandy soil at the wetting front was far greater than that of the wetting area or the outside of the wetting area. During the irrigation cycle, the EC of the wetting front and the wetting area changed at a significant magnitude, whereas the EC of the outside of the wetting area remained largely steady. The horizontal influence distance of drip irrigation on the salt accumulation at the soil surface was about 100 cm, and the vertical influence depth was 5 cm. The three most abundant ions in the accumulated salt at the aeolian sandy soil surface were Na+, Cl- and SO42-. The salt accumulation at the soil surface was influenced by air temperature, wind speed, mineralization of irrigation water, sand burial thickness, soil texture, and litter content.
基金Supported by the National Natural Science Foundation of China(41775030 and 41805006)。
文摘This study was the first to conduct high-resolution consecutive detection of clouds over the hinterland of the Taklimakan Desert(TD)from April to June 2018 based on a ground-based Ka-band millimeter-wave cloud radar(MMCR),with focus on the structure and evolution of the desert clouds.We calculated reflectivity factor(Z),cloud boundary,and liquid water content(LWC)by use of the MMCR power spectrum data,which were verified against the observations from cloud profile radar(CPR)on board Cloud Sat.The results show that the TD clouds were mostly medium and high clouds,with thickness generally less than 2 km;moreover,the mean LWCs of these clouds were less than 0.01 gm^(-3),implying that cirrus and stratiform clouds were predominant.For the observed low clouds,however,the average thickness was 3166 m and accompanying drizzles were concentrated within 2.5-4.5 km,indicating that precipitation was more likely to occur in the low clouds.The mean LWC in the TD clouds was 0.0196 gm^(-3),less than that of clean clouds.Compared to other periods,the average durations and LWCs in the TD clouds increased significantly around noon owing to obvious surface sensible heating.The average time for evolution of high clouds into low clouds was approximately 2 h,and the average maximum LWC increased from 0.008 to 0.139 gm;.The results obtained herein provide a key reference for further studies of the structure and evolution characteristics of the desert clouds.
基金the National Centre of Excellence in Geology, University of Peshawar for providing funds and logistical support during this research
文摘Microscopic to mesoscopic structural investigations and foliation intersection axes(FIAs) preserved in porphyroblasts reveal a very complex history of deformation and tectonism within the southwestern part of the western hinterland zone along the northern margin of the Indian plate, NW Pakistan. D_1, D_2, and D_3 related structures in the southwestern part resemble the F_1/F_2, F_3, and F_4 related structures in the northeastern part of the western hinterland zone. These structures developed at the same time through the same changes in the direction of bulk shortening in southwestern and northeastern parts of the western hinterland zone. FIA set 1 indicates NW-SE shortening. The D_2 fabrics, mineral lineations and fold axes indicate E-W shortening. FIA set 2, D_3 fold axes and mineral lineations indicate NNE-SSW shortening. D_3 deformation event is equivalent to the F_4 deformation event in the northeastern part of the western hinterland zone. D_4 fold axes, mineral stretching lineations and axial plane foliation suggest ENE-WSW shortening. The D_4 NNW-SSE fabrics, which formed in the region after the formation of the MMT(main mantle thrust), Khairabad-Panjal thrust fault, Hissartang thrust fault and MBT(main boundary thrust), likely resulted from ENE-WSW bulk shortening related to development of the Hazara-Kashmir syntaxis.
文摘To eliminate the long-term threat to the northern and northwestern territories imposed by Huns in 138 B.C.,Liu Che,the Emperor of the Han Dynasty,sent Zhang Qian to go to Xiyu(the wild-west region)and tried to ally with Great Yüeh-chin,Huns’sworn enemy,so as to attack Huns from both east and west sides.As long as 13 years of his reign,Zhang Qian was captured and detained by the Huns twice,but he escaped successfully each time.He reached the regions known today as Uzbekistan,Kazakhstan and north of Afghanistan and some other places with thousands of miles journey.In 126 B.C.,Zhang Qian came back to Chang-An,the capital of the Han Dynasty.Unfortunately,only one person Tang Yifu out of over 100 members in the diplomatic team survived and returned with him.Of course,the diplomatic mission of allying Great Yüeh-chin was not fulfilled.However,Zhang Qian’s expedition to the West Regions was still of great importance.It is based on his geographic,cultural and social knowledge about the West Region that the continuous military actions initiated by the Emperor Liu Che of the Han Dynasty succeeded finally.What’s more,Zhang Qian’s Expedition to the West Regions accelerated the cultural and economic exchanges between the East and the West,which influenced the development process of world history of civilization directly and continually(Fan,1964:86-89).Today,there is no immediate military threat to China’s northwest and north,while it is convenient for China to connect quickly with other countries and regions by the development of transport and communication technologies.Particularly,the acceleration of the globalization and innovation of the internet technology has even linked the most remote areas of China with the world.However,the geo-political factors in the hinterlands of the Eurasian continent still significantly exert impact on China’s security and development.Therefore,it is very necessary for China to make another and even more significant and extensive“Expedition to the West Regions”-to strategically approach the Greater Middle East through the hinterland.