Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geomet...Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.展开更多
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ...Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.展开更多
In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference ...In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.展开更多
In this paper the track behavior of passenger car was studied. The vehicle driving trajectory and driving direction were defined, and a classification of the type of vehicle trajectories along the curves was developed...In this paper the track behavior of passenger car was studied. The vehicle driving trajectory and driving direction were defined, and a classification of the type of vehicle trajectories along the curves was developed. The statistical parameters of vehicle trajectory samples in free flow and their frequency curves and cumulative frequency curves were achieved, K-S test and chi-square test were used to test normal distribution and gamma distribution for collected sample data, and the probabili- ty density functions were given. At last, dispersion degree between vehicle trajectory random varia- ble and the characteristic value of cumulative frequency curve in each key cross section in curves was analyzied. The proposed conclusion can provide theoretical support for the reasonable optimization of widen curve, design of alignment and the management of counter flow conflicts.展开更多
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(...Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.展开更多
The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of sev...The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.展开更多
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona...Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.展开更多
In order to study the effects of uneven adhesion coefficient and crosswind on alignment design indexes, a six-axle semi-trailer is selected as the typical vehicle model to investigate the effects of uneven adhesion co...In order to study the effects of uneven adhesion coefficient and crosswind on alignment design indexes, a six-axle semi-trailer is selected as the typical vehicle model to investigate the effects of uneven adhesion coefficient caused by superelevation under the condition of rainfall on the truck's lateral stability, quantifying the crosswind using TruckSim. Based on the basic theory of vehicle dynamics, vehicle safety driving model is established. Also, the minimum radius is calculated with the consideration of uneven adhesion coefficient and crosswind. The results show that the effects of uneven adhesion coefficient and crosswind on the truck's lateral stability increase with the increasing of the truck's speed. Truck's lateral slide instability begins to appear when crosswind grade grows up to 9 or above. According to sensitive analysis, speed, rainfall, crosswind, and the interaction of the speed and rainfall have significant influences on the truck's lateral stability. The results quantify the effects of uneven adhesion coefficient and crosswind on truck's lateral stability. The advised index for horizontal curve design control is proposed, which provides a good reference for road safety design and safety protective measures. It can also provide theoretical basis and guidelines for highway safe operation in the windy and rainy areas.展开更多
Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, ...Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, the Finite Element Method (FEM) is a valid tool for the analysis of structures with complex geometries and, therefore, the development of sophisticated analytical formulations is not needed anymore. However, they are still useful for the validation of FE models. This paper presents the case study of an existing viaduct built in North Italy, aiming to compare analytical approaches and numerical modelling. The bridge is characterized by an axis curved in two directions and a rectilinear segment. The global analysis of the viaduct is carried out with special attention to the attributes that cause torque action and bending moment. The theoretical developments focus on a deeper understanding of the torsional response under different constraint and loading conditions and aspire to raise awareness of the mutual interaction of flexural and torsional behaviour, that are always present in these complex curved systems. The examination of the case study is also obtained by comparing the response of isostatic and hyperstatic curvilinear steel box-girders.展开更多
The desired speed will help the drivers control their driver behavior that could directly influences the traffic safety. This paper presents a basic definition of a driver' s desired speed, and analyzes the effects o...The desired speed will help the drivers control their driver behavior that could directly influences the traffic safety. This paper presents a basic definition of a driver' s desired speed, and analyzes the effects of road geometer parameter, driver behavior and vehicle performance on the desired speed. By setting the familiar horizontal curve as the research environment, the generating process of the desired speed was described. Then, combined with the desired trajectory, the effect of driver' s identification of vehicle dynamic on the desired speed was highlighted. Based on the vehicle dynamic theory, a desired speed model that consisted of the desired trajectory, the driver's experience and vehicle parameter was established and numerically analyzed.展开更多
Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated th...Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated the impact of different operating speeds when negotiating combined horizontal and vertical curves under unfavorable environmental conditions on Wyoming’s interstates via vehicle dynamics simulation software.The simulation tools provided the acting forces on each tire of the vehicle and the side friction(skidding)margins.This allowed for examining the interaction between vehicle dynamics and road geometry in such alignments.Also,linear regression analysis was implemented to investigate the skidding margins based on the simulation results to demonstrate when a vehicle is more likely to deviate from its desired trajectory.Specifically,this examines the contributing factors that significantly influence the skidding margins.The results indicated that:1)the skidding margins are dramatically decreased by adverse weather conditions even with lower degree of curvature and gradient values of combined curves and more particularly at higher operating speeds conditions.Increasing the vehicle speed on the curve by 10%,the skidding margin dropped by 15%.2)Compared to heavy trucks and sports utility vehicles(SUVs),passenger cars require the highest side friction demand.3)The effect of applying brakes on vehicle stability depends on the road surface condition;applying the brakes on snowy road surfaces increases the potential of vehicle skidding especially for heavy trucks.This study assessed the curve speed limits and showed how important to assign safe and appropriate limits speed since the skidding likelihood is significantly sensitive to the vehicle speeds.This study is beneficial to Wyoming’s roadway agencies since hazardous sections having combined horizontal and vertical curves are identified.Also,critical situations that require additional attention from law enforcement agencies are pinpointed.Finally,recommendations that are valuable to roadway agencies are made based on this study’s findings.展开更多
In this paper, we analyze the structures of the global attractors of the coupled systems of continuous Josephson junctions and the two-point Josephson junction without capacity effect.We prove that each system has a u...In this paper, we analyze the structures of the global attractors of the coupled systems of continuous Josephson junctions and the two-point Josephson junction without capacity effect.We prove that each system has a unique one-dimensional invariant continuous curve which is globally attracting. Therefore, the systems behave exactly as a one-dimensional system.展开更多
基金The National Natural Science Foundation of China(No.51108011)
文摘Using a driving simulator,the effects of Chinese chevrons on drivers’actual and perceived safe speeds at horizontal curves on two-lane rural highways are tested. Twelve horizontal curves with different roadway geometries are designed and used as the simulated scenarios.The results show that, regardless of the curve radius, chevrons at horizontal curves provide advance warning and speed control for vehicles on the nearside of chevrons.Besides,chevrons can be used as an addition to speed limit signs in preventing excessive speed at horizontal curves and, therefore, can contribute to a reduction in run-off-road crashes.Moreover, Chinese chevrons can also serve to provide an improved sense of safety while driving around sharp curves.These study results lay a foundation for setting Chinese chevrons more reasonably.
文摘Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.
基金Supported by the National Natural Science Foundation of China(No.5130416)
文摘In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.
基金Supported by the National Natural Science Foundation of China(5097811450808093)
文摘In this paper the track behavior of passenger car was studied. The vehicle driving trajectory and driving direction were defined, and a classification of the type of vehicle trajectories along the curves was developed. The statistical parameters of vehicle trajectory samples in free flow and their frequency curves and cumulative frequency curves were achieved, K-S test and chi-square test were used to test normal distribution and gamma distribution for collected sample data, and the probabili- ty density functions were given. At last, dispersion degree between vehicle trajectory random varia- ble and the characteristic value of cumulative frequency curve in each key cross section in curves was analyzied. The proposed conclusion can provide theoretical support for the reasonable optimization of widen curve, design of alignment and the management of counter flow conflicts.
基金Indian Institute of Technology Bombay for providing funding (Project code:13IRCCSG001)
文摘Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.
文摘The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.
文摘Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120205120013)
文摘In order to study the effects of uneven adhesion coefficient and crosswind on alignment design indexes, a six-axle semi-trailer is selected as the typical vehicle model to investigate the effects of uneven adhesion coefficient caused by superelevation under the condition of rainfall on the truck's lateral stability, quantifying the crosswind using TruckSim. Based on the basic theory of vehicle dynamics, vehicle safety driving model is established. Also, the minimum radius is calculated with the consideration of uneven adhesion coefficient and crosswind. The results show that the effects of uneven adhesion coefficient and crosswind on the truck's lateral stability increase with the increasing of the truck's speed. Truck's lateral slide instability begins to appear when crosswind grade grows up to 9 or above. According to sensitive analysis, speed, rainfall, crosswind, and the interaction of the speed and rainfall have significant influences on the truck's lateral stability. The results quantify the effects of uneven adhesion coefficient and crosswind on truck's lateral stability. The advised index for horizontal curve design control is proposed, which provides a good reference for road safety design and safety protective measures. It can also provide theoretical basis and guidelines for highway safe operation in the windy and rainy areas.
文摘Various theories and analytical formulations were implemented and exploited in the 1980s and 1990s for the design of bridge beams or decks curved in the horizontal plane and subjected to out-of-plane loads. Nowadays, the Finite Element Method (FEM) is a valid tool for the analysis of structures with complex geometries and, therefore, the development of sophisticated analytical formulations is not needed anymore. However, they are still useful for the validation of FE models. This paper presents the case study of an existing viaduct built in North Italy, aiming to compare analytical approaches and numerical modelling. The bridge is characterized by an axis curved in two directions and a rectilinear segment. The global analysis of the viaduct is carried out with special attention to the attributes that cause torque action and bending moment. The theoretical developments focus on a deeper understanding of the torsional response under different constraint and loading conditions and aspire to raise awareness of the mutual interaction of flexural and torsional behaviour, that are always present in these complex curved systems. The examination of the case study is also obtained by comparing the response of isostatic and hyperstatic curvilinear steel box-girders.
基金Supported by Beijing Municipal Natural Science Foundation(8092026)the National Nature Science Foundation of China(50878023)National Science & Technology Pillar Program(2009BAG13A02)
文摘The desired speed will help the drivers control their driver behavior that could directly influences the traffic safety. This paper presents a basic definition of a driver' s desired speed, and analyzes the effects of road geometer parameter, driver behavior and vehicle performance on the desired speed. By setting the familiar horizontal curve as the research environment, the generating process of the desired speed was described. Then, combined with the desired trajectory, the effect of driver' s identification of vehicle dynamic on the desired speed was highlighted. Based on the vehicle dynamic theory, a desired speed model that consisted of the desired trajectory, the driver's experience and vehicle parameter was established and numerically analyzed.
基金the generous financial support of the Wyoming Department of Transportation (WYDOT)Mountain-Plains Consortium (MPC) (Grant number: 69A3551747108 (FAST Act)) for this study
文摘Roadways in Wyoming are characterized by challenging horizontal profiles,vertical profiles,a combination of the two and adverse weather conditions,all of which affect vehicle stability.In this study,we investigated the impact of different operating speeds when negotiating combined horizontal and vertical curves under unfavorable environmental conditions on Wyoming’s interstates via vehicle dynamics simulation software.The simulation tools provided the acting forces on each tire of the vehicle and the side friction(skidding)margins.This allowed for examining the interaction between vehicle dynamics and road geometry in such alignments.Also,linear regression analysis was implemented to investigate the skidding margins based on the simulation results to demonstrate when a vehicle is more likely to deviate from its desired trajectory.Specifically,this examines the contributing factors that significantly influence the skidding margins.The results indicated that:1)the skidding margins are dramatically decreased by adverse weather conditions even with lower degree of curvature and gradient values of combined curves and more particularly at higher operating speeds conditions.Increasing the vehicle speed on the curve by 10%,the skidding margin dropped by 15%.2)Compared to heavy trucks and sports utility vehicles(SUVs),passenger cars require the highest side friction demand.3)The effect of applying brakes on vehicle stability depends on the road surface condition;applying the brakes on snowy road surfaces increases the potential of vehicle skidding especially for heavy trucks.This study assessed the curve speed limits and showed how important to assign safe and appropriate limits speed since the skidding likelihood is significantly sensitive to the vehicle speeds.This study is beneficial to Wyoming’s roadway agencies since hazardous sections having combined horizontal and vertical curves are identified.Also,critical situations that require additional attention from law enforcement agencies are pinpointed.Finally,recommendations that are valuable to roadway agencies are made based on this study’s findings.
文摘In this paper, we analyze the structures of the global attractors of the coupled systems of continuous Josephson junctions and the two-point Josephson junction without capacity effect.We prove that each system has a unique one-dimensional invariant continuous curve which is globally attracting. Therefore, the systems behave exactly as a one-dimensional system.