Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain...Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.展开更多
Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the s...Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.展开更多
Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not e...Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR.展开更多
Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioel...Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.展开更多
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.
基金This study was supported by the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare(HI18C1216)and the Soonchunhyang University Research Fund.
文摘Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2022-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR.
基金supported by a grant from the Korea Health Technology R&D Project through the KoreaHealth Industry Development Institute (KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea (grant number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.