期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor 被引量:6
1
作者 HUA-JUN FENG LI-FANG HU +2 位作者 DAN SHAN CHENG-RAN FANG DONG-SHENG SHEN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第6期460-466,共7页
Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), a... Objective To examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation. Methods COD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR. Results The removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor. Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃to 28℃. 展开更多
关键词 Carrier anaerobic baffled reactor Dilute wastewater hydraulic residence time TEMPERATURE
下载PDF
Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation 被引量:1
2
作者 MAHMOOD Qaisar ISLAM Ejazul 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1149-1156,共8页
The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respe... The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent con- centration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil. 展开更多
关键词 Anaerobic processes Anoxic nitrate removal BIODESULFURIZATION BIOTRANSFORMATION Fluidized bed bioreactors hydraulic residence time (HRT)
下载PDF
Effects of operational factors on soluble microbial products in a carrier anaerobic baffled reactor treating dilute wastewater 被引量:12
3
作者 FENG Huajun HU Lifang +3 位作者 SHAN Dan FANG Chengran HE Yonghua SHEN Dongsheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第6期690-695,共6页
The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier... The effects of feed strength, hydraulic residence time (HRT), and operational temperatures on soluble microbial product (SMP) production were investigated, to gain insights into the production mechanism. A carrier anaerobic baffled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions, namely, feed strengths of 300-600 mg/L, HRTs of 9- 18 h, and temperatures of 10-28℃. Generally, SMP production increased with increasing feed strength and decreasing temperature. At high temperature (28℃), SMP production increased with decreasing HRT. As the temperature was decreased to 18 and 10℃, the SMP production was at its peak for 12 h HRT. Therefore, temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio was found at high temperature and long HRT because of complete volatile fatty acid degradation. SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR. As a secondary metabolite, some SMP could be consumed at lower feed strength. 展开更多
关键词 carrier anaerobic baffled reactor dilute wastewater soluble microbial product hydraulic residence time feed strength temperature
下载PDF
Cross River Watershed Hydrologic Adjustment: Pre- and Post-June 2012 Mega-storm
4
作者 Joe Magner Lu Zhang 《Journal of Environmental Science and Engineering(B)》 2014年第3期133-141,共9页
The Cross River watershed was disturbed by historic logging activity during the past century, but under the management of the USDA (United States Department of Agriculture) Forest Service, the area has mostly recove... The Cross River watershed was disturbed by historic logging activity during the past century, but under the management of the USDA (United States Department of Agriculture) Forest Service, the area has mostly recovered from ecological disturbance. Today a new threat is being imposed by climate change; changes affect not only the temperature but also more extreme wind and rain In 2012, a mega-storm event passed through the north shore region of Lake Superior overwhelming many watersheds with excessive rain and runoff. As part of a Cross River study for the Forest Service, pre- and post-event hydrologic adjustment of the Cross River watershed were captured. Samples were collected for δD and δ18O during April, July, and September to estimate HRT (hydraulic residence time) using the stable isotopes of hydrogen and oxygen, The results showed that water collected throughout the watershed shifted toward the signature of the mega-event precipitation signature, then slowly diffused with new precipitation and fractionation processes that resumed into the summer and fall. 展开更多
关键词 ISOTOPE hydraulic residence time Cross River.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部