期刊文献+
共找到443篇文章
< 1 2 23 >
每页显示 20 50 100
Research Progress of Catalysts and Initiators for Promoting the Cracking of Endothermic Hydrocarbon Fuels 被引量:2
1
作者 Yiyao Liu Ran Chen +1 位作者 Jie Liu Xiangwen Zhang 《Transactions of Tianjin University》 EI CAS 2022年第3期199-213,共15页
Catalytic/initiated cracking of endothermic hydrocarbon fuels is an eff ective technology for cooling a hypersonic aircraft with a high Mach number(over 5).Catalysts and initiators can promote fuel cracking at low tem... Catalytic/initiated cracking of endothermic hydrocarbon fuels is an eff ective technology for cooling a hypersonic aircraft with a high Mach number(over 5).Catalysts and initiators can promote fuel cracking at low temperatures,increase fuel conversion and the heat sink capacity,and suppress coke deposition,thereby reducing waste heat.Catalysts mainly include metal oxide catalysts,noble metal catalysts and metal nanoparticles,zeolite catalysts,nanozeolite catalysts,and coating catalysts.Moreover,initiators roughly include nitrogenous compounds,oxygenated compounds,and hyperbranched polymer initiators.In this review,we aim to summarize the catalysts and initiators for cracking endothermic hydrocarbon fuels and their mechanisms for promoting cracking.This review will facilitate the development of the synthesis and exploration of catalysts and initiators. 展开更多
关键词 Endothermic hydrocarbon fuels CRACKING CATALYSTS INITIATORS
下载PDF
Investigation of heat sink of endothermic hydrocarbon fuels 被引量:1
2
作者 郭永胜 林瑞森 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期632-635,共4页
Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-... Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter. 展开更多
关键词 Endothermic hydrocarbon fuels Heat sink. Thermal management Cooling capacity
下载PDF
Effect of Liquid-phase Oxidation Impurities on Solubility of Water in Hydrocarbon Fuels
3
作者 A.A.Boriaev 《火炸药学报》 EI CAS CSCD 北大核心 2018年第3期230-235,共6页
The effect of liquid-phase oxidation impurities on the solubility of water in hydrocarbon fuels was studied.The results show that the concentration of polar surfactant molecules in the first region increases(true solu... The effect of liquid-phase oxidation impurities on the solubility of water in hydrocarbon fuels was studied.The results show that the concentration of polar surfactant molecules in the first region increases(true solution)during fuel oxidation,and since the oxidation groups(-COOH,-O=O,-OH,etc.)have similar dipole momentμ,the dielectric loss tangent tanδincreases linearly in this region with surfactant concentration.Upon further oxidation,micelle structures begin to form at a certain point.Micelle formation leads to a sharp decrease in the dipole moment attributable to the monomer unitμ/n,where nis the number of molecules in a micelle.A several-fold decrease in the dipole moment leads to a sharp drop in tanδ.Upon further increase in the number and size of micelles,the dipole moment remains practically unchanged,and the dielectric loss tangent begins to increase linearly again with surfactant concentration.If the critical concentration for micelle formation is achieved upon further oxidation of hydrocarbon liquids,micelle formation processes occur spontaneously in the solution,and the true solution becomes a colloidal system(sol).The resulting micelles are structured with hydrocarbon radicals of molecules toward the outside and hydrophilic(polar)groups toward the inside.Water molecules are located inside micelles and held so securely that water molecules do not aggregate as temperature decreases.The reason for significant differences in the equilibrium solubility of water in hydrocarbon fuels is the different oxidation factors of product samples,resulting from the accumulation of various concentrations of oxidation products,which are natural surfactants,in hydrocarbon fuels. 展开更多
关键词 water solubility hydrocarbon fuels oxidation factor
下载PDF
Evaluation of Cellulose as a Substrate for Hydrocarbon Fuel Production by <i>Ascocoryne sarcoides</i>(NRRL 50072) 被引量:1
4
作者 Natasha Mallette Elle M. Pankratz +4 位作者 Albert E. Parker Gary A. Strobel Scott C. Busse Ross P. Carlson Brent M. Peyton 《Journal of Sustainable Bioenergy Systems》 2014年第1期33-49,共17页
The fungal endophyte, Ascocoryne sarcoides, produced aviation, gasoline and diesel-relevant hydrocarbons when grown on multiple substrates including cellulose as the sole carbon source. Substrate, growth stage, cultur... The fungal endophyte, Ascocoryne sarcoides, produced aviation, gasoline and diesel-relevant hydrocarbons when grown on multiple substrates including cellulose as the sole carbon source. Substrate, growth stage, culturing pH, temperature and medium composition were statistically significant factors for the type and quantity of hydrocarbons produced. Gasoline range (C5-C12), aviation range (C8-C16) and diesel range (C9-C36) organics were detected in all cultured media. Numerous non-oxygenated hydrocarbons were produced such as isopentane, 3,3-dimethyl hexane and d-limonene during exponential growth phase. Growth on cellulose at 23°C and pH 5.8 produced the highest overall yield of fuel range organics (105 mg * g·biomass-1). A change in metabolism was seen in late stationary phase from catabolism of cellulose to potential oxidation of hydrocarbons resulting in the production of more oxygenated compounds with longer carbon chain length and fewer fuel-related compounds. The results outline rational strategies for controlling the composition of the fuel-like compounds by changing culturing parameters. 展开更多
关键词 BIOfuel CELLULOSE Fungal hydrocarbons FILAMENTOUS FUNGUS Gasoline fuel
下载PDF
Waste Sneaker Conversion into Liquid Hydrocarbon Fuel
5
作者 Moinuddin Sarker Md. Sadikur Rahman Mohammad Mamunor Rashid Mohammed Molla 《材料科学与工程(中英文版)》 2011年第5期583-588,共6页
关键词 废物处置 碳氢燃料 液体燃料 运动鞋 热塑性聚氨酯弹性体 燃料转换 TPU 组成部分
下载PDF
Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure 被引量:12
6
作者 Tao Zhi Cheng Zeyuan +1 位作者 Zhu Jianqin Li Haiwang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1247-1261,共15页
A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temp... A variety of turbulence models were used to perform numerical simulations of heat transfer for hydrocarbon fuel flowing upward and downward through uniformly heated vertical pipes at supercritical pressure. Inlet temperatures varied from 373 K to 663 K, with heat flux rang- ing from 300 kW/m2 to 550 kW/m2. Comparative analyses between predicted and experimental results were used to evaluate the ability of turbulence models to respond to variable thermophysical properties of hydrocarbon fuel at supercritical pressure. It was found that the prediction performance of turbulence models is mainly determined by the damping function, which enables them to respond differently to local flow conditions. Although prediction accuracy for experimental results varied from condition to condition, the shear stress transport (SST) and launder and sharma models performed better than all other models used in the study. For very small buoyancy-influenced runs, the thermal-induced acceleration due to variations in density lead to the impairment of heat transfer occurring in the vicinity of pseudo-critical points, and heat transfer was enhanced at higher temperatures through the combined action of four thermophysical properties: density, viscosity, thermal conductivity and specific heat. For very large buoyancy- influenced runs, the thermal-induced acceleration effect was over predicted by the LS and AB models. 展开更多
关键词 Buoyancy effect hydrocarbon fuel Supercritical pressure Turbulence models Variable properties
原文传递
Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures 被引量:6
7
作者 Chunben Zhang Guoqiang Xu +1 位作者 Hongwu Deng Kun Zhu 《Propulsion and Power Research》 SCIE 2013年第2期119-130,共12页
The characteristics of flow resistance of a typical hydrocarbon fuel(RP-3)flowthrough adiabatic horizontal miniature tubes at supercritical pressures are experimentallyinvestigated for both laminar and turbulent flow.... The characteristics of flow resistance of a typical hydrocarbon fuel(RP-3)flowthrough adiabatic horizontal miniature tubes at supercritical pressures are experimentallyinvestigated for both laminar and turbulent flow.The experiments are conducted by using along tube measuring section and a short tube measuring section simultaneously in order toeliminate the effect of local pressure drop.In these experiments,the temperature of RP-3changes from(295 to 789)K and the reduced pressure(P/Pc,Pc=2.33 MPa)ranges from 1 to2.58,the mass flux is up to 1572.7 kg/(m^(2).s).Test results indicate that frictional pressuredrops for various supercritical pressures at the same mass flux can be considered as equalwith each other when the reduced temperature Tb/Tpc<0.95.When Tb/Tpc>0.95,differenceappears and increases with the increase of Tb/Tpc.Additionally,the friction factor(f)of thesupercritical fluid for turbulent flow has a critical value at Tb/Tpc=1,the values of f at thispoint for all pressures and mass fluxes are equal with each other.Moreover,at the same massflux,there are two comresponding friction factors for the same Re,one is in the region of Tb/Tpc<1,the other is in the region of Tb/Tpc> 1.Finally, classical conelations of frictionfactor is inapplicable when Tb/Tpc>0.95 at supercritical pressure and a new coelation hasbeen obtained based on the experimental data. 展开更多
关键词 SUPERCRITICAL hydrocarbon fuel Flow resistance Friction factor Pressure drop
原文传递
Artificial neural network analysis of the Nusselt number and friction factor of hydrocarbon fuel under supercritical pressure 被引量:2
8
作者 Kaihang Tao Jianqin Zhu +1 位作者 Zeyuan Cheng Dike Li National 《Propulsion and Power Research》 SCIE 2022年第3期325-336,共12页
This paper presents the Nusselt number and friction factor model for hydrocarbon fuel under supercritical pressure in horizontal circular tubes using an artificial neural network(ANN)analysis on the basis of the back ... This paper presents the Nusselt number and friction factor model for hydrocarbon fuel under supercritical pressure in horizontal circular tubes using an artificial neural network(ANN)analysis on the basis of the back propagation algorithm.The derivation of the proposed model relies on a large number of experimental data obtained from the tests performed with the platform of supercritical flow and heat transfer.Different topology structures,training algo-rithms and transfer functions are employed in model optimization.The performance of the optimal ANN model is evaluated with the mean relative error,the determination coefficient,the number of iterations and the convergence time.It is demonstrated that the model has high prediction accuracy when the tansig transfer function,the Levenberg-Marquardt training algo-rithm and the three-layer topology of 4-9-1 are selected.In addition,the accuracy of the ANN model is observed to be the highest compared with other classic empirical correlations.Mean relative error values of 4.4%and 3.4%have been achieved for modeling of the Nusselt number and friction factor respectively over the whole experimental data set.The ANN model estab-lished in this paper is shown to have an excellent performance in learning ability and general-ization for characterizing the flow and heat transfer law of hydrocarbon fuel,which can provide an alternative approach for the future study of supercritical fluid characteristics and the associ-ated engineering applications. 展开更多
关键词 Artificial neural network(ANN) Nusselt number Friction factor Supercritical pressure hydrocarbon fuel
原文传递
Experimental Study of Operation Performance for Hydrocarbon Fuel Pump with Low Specific Speed 被引量:1
9
作者 WU Xianyu YANG Jun JIN Xuan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第5期440-447,共8页
In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven b... In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump. 展开更多
关键词 expansion cycle scram jet hydrocarbon fuel turbo-pump operation performance
原文传递
Working state map of hydrocarbon fuels for regenerative cooling 被引量:1
10
作者 Chen Zhang Hui Gao +2 位作者 Jiajun Zhao Guice Yao Dongsheng Wen 《Propulsion and Power Research》 SCIE 2023年第2期199-211,共13页
Regenerative cooling by endothermic hydrocarbon fuel(EHF)is one of the most promising techniques for thermal management of supersonic or hypersonic aircraft.How to maintain the fuel working in proper states is an impo... Regenerative cooling by endothermic hydrocarbon fuel(EHF)is one of the most promising techniques for thermal management of supersonic or hypersonic aircraft.How to maintain the fuel working in proper states is an important issue to maximize the cooling potential of EHT.This work proposes a novel working state map,including risking zone(RZ),thermal cracking zone(TCZ),supercritical zone(SupZ)and subcritical zone(SubZ),to differentiate possible working states of an EHF during regenerative cooling.Using n-decane flowing in a circular tube as an example,the boundaries of four zones are determined by numerical simulation covering different heat fluxes(0.2-4.0 MW·m^(-2))and mass flow rates(0.5-10.5 g·s^(-1))under two operating pressures(3.45 and 5.00 MPa).Empirical correlations for three boundary lines are obtained and the maximum cooling capacity is identified,as well as the identification of the pressure effect.The revelation of such new perspective of regenerative cooling is of great implication to the design and optimization of cooling system for future thermal management. 展开更多
关键词 Regenerative cooling hydrocarbon fuel State map Chemical heat sink Thermal management
原文传递
Converting rubber seed oil into hydrocarbon fuels via supported Pd-catalyst
11
作者 Chen Yubao Hao Yajie +7 位作者 Zhao Yongyan Zhou Liming Yang Shunping Gao Yanni Ma Jiangli Du Junchen Dona Souliyathai Zhang Aimin 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第6期201-209,共9页
The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst,and analyzed emphatically some elements affected catalytic cracking process,for example,temper... The one-step hydrotreatment of rubber seed oil to produce hydrocarbon fuels has been carried out via supported Pd-catalyst,and analyzed emphatically some elements affected catalytic cracking process,for example,temperature,hydrogen partial pressure and dosage of catalyst,etc.Through experimental research,the author found out the appropriate catalytic cracking conditions as follows:310℃ of reaction temperature,2 MPa of hydrogen partial pressure,15 of the ratio of oil to catalyst(m(oil)/m(catalyst)),100 r/min of stirring speed.Under these conditions,effective component of hydrocarbon fuels in the converted oil accounts for 99.49%,and the proportion of C_(8)-C_(16) can reach as high as 79.61%.The converted oil was similar to petroleum-based oil in chemical composition,and can be used for future the aviation biofuels development as the source of raw material because it contains a large amount of hydrocarbon in the range of C_(8)-C_(16). 展开更多
关键词 rubber tree seed oil catalytic cracking Pd based catalyst hydrocarbon fuels BIOfuel renewable energy
原文传递
Hydrocarbon pneumonitis following fuel siphonage: A case report and literature review 被引量:3
12
作者 Yi-jung Chen Chien-chin Hsu Kuo-tai Chen 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2019年第2期69-74,共6页
BACKGROUND: People sometimes siphon fuel to fill their tanks. However, this is a potentially dangerous procedure and may cause hydrocarbon pneumonitis. We present the case of a patient with severe hydrocarbon pneumoni... BACKGROUND: People sometimes siphon fuel to fill their tanks. However, this is a potentially dangerous procedure and may cause hydrocarbon pneumonitis. We present the case of a patient with severe hydrocarbon pneumonitis after siphoning fuel. The patient underwent artifi cial ventilation and was admitted to hospital for 97 days. METHODS: We review the relevant literature for a better understanding of clinical features and management strategies for hydrocarbon pneumonitis following fuel siphonage.RESULTS: We reviewed 15 articles, which included 3 original articles and 12 case reports that reported the clinical features of fuel siphonage. In addition, we added our presented case for data analysis. A total of 40 cases were included in this review. The literature review found that hydrocarbon pneumonitis caused by fuel siphonage occurs worldwide and that most patients(80%) became symptomatic within 1 day of aspiration. Cough(70%), chest pain(62.5%), dyspnoea(55%), and fever(52.5%) presented in more than half of all patients. The right middle lobe(80%) was the predominantly involved lung fi eld; more than one-third of patients(36.7%) showed the involvement of two lobes.CONCLUSION: Patient history, computed tomographic scans of the chest, and bronchoalveolar lavage are the commonly used diagnostic tools. Supportive care remains the foundation of treatment, whereas antibiotics, steroids, and bronchoalveolar lavage are practical therapies. Patients' clinical improvement precedes the resolution of lesions on chest X-ray. Most complications arise from pulmonary lesions. The prognosis of patients suffering from hydrocarbon pneumonitis following fuel siphonage might be improved by accurate diagnosis and appropriate care. 展开更多
关键词 SIPHONAGE Diesel fuel ASPIRATION hydrocarbon PNEUMONITIS
下载PDF
Ni doped La_(0.6)Sr_(0.4)FeO_(3-δ) symmetrical electrode for solid oxide fuel cells 被引量:1
13
作者 马朝晖 孙春文 +3 位作者 马超 吴昊 占忠亮 陈立泉 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1347-1353,共7页
The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel ce... The conventional Ni cermet anode suffers from severe carbon deposition and sulfur poisoning when fossil fuels are used. Alternative anode materials are desired for high performance hydrocarbon fuel solid oxide fuel cells (SOFCs). We report the rational design of a very active Ni doped La0.6Sr0.4FeO3‐δ(LSFN) electrode for hydrocarbon fuel SOFCs. Homogeneously dispersed Ni‐Fe alloy nanoparticles were in situ extruded onto the surface of the LSFN particles during the operation of the cell. Sym‐metric SOFC single cells were prepared by impregnating a LSFN precursor solution onto a YSZ (yt‐tria stabilized zirconia) monolithic cell with a subsequent heat treatment. The open circuit voltage of the LSFN symmetric cell reached 1.18 and 1.0 V in humidified C3H8 and CH4 at 750??, respective‐ly. The peak power densities of the cells were 400 and 230 mW/cm2 in humidified C3H8 and CH4, respectively. The electrode showed good stability in long term testing, which revealed LSFN has good catalytic activity for hydrocarbon fuel oxidation. 展开更多
关键词 Solid oxide fuel cells Ni dopedLa0.6Sr0.4FeO3-δ Symmetrical electrode hydrocarbon fuels
下载PDF
机器学习辅助的烃类分子性质预测与燃料的高通量筛选
14
作者 侯放 齐晓宁 +4 位作者 刘睿宸 李玲 王莅 张香文 李国柱 《含能材料》 北大核心 2025年第1期1-12,共12页
通过数据收集、结构优化和量化计算,建立了碳数从1到50的2899个烃类分子“结构-多种性质”数据集,性质包含熔点(T_(m))、沸点(T_(b))、密度(ρ)、0 K下的内能(U_(0))、298.15 K下的内能(U)、298.15 K下的焓(H)、298.15 K下的吉布斯自由... 通过数据收集、结构优化和量化计算,建立了碳数从1到50的2899个烃类分子“结构-多种性质”数据集,性质包含熔点(T_(m))、沸点(T_(b))、密度(ρ)、0 K下的内能(U_(0))、298.15 K下的内能(U)、298.15 K下的焓(H)、298.15 K下的吉布斯自由能(G)。以表示分子结构的库伦矩阵作为模型输入,建立了决策树回归模型、交叉验证的最小绝对收缩和选择算子回归模型、交叉验证的岭回归模型、极限梯度提升回归模型4种不同的机器学习模型。通过比较不同模型预测性质的精度得出,极限梯度提升回归模型更适用于预测烃类分子的熔点、沸点、密度等通过实验测得的性质,交叉验证的岭回归模型更适用于预测烃类分子的内能、焓、吉布斯自由能等能量的通过理论计算得到的性质。同时,最优的机器学习组合模型可以准确预测相同碳数、不同种类和同分异构体烃类分子的性质。使用最优的机器学习模型计算了34种已通过实验合成的高密度碳氢燃料的密度,计算值与实验值的平均绝对误差为0.0290 g·cm^(-3)。进而,预测了开源数据库GDB-13C中的319,893个烃类分子的燃料性质,并高通量筛选出了37种低凝固点、高密度的新型碳氢燃料候选分子。采用基团贡献法和DFT方法进一步计算了筛选出的碳氢分子的关键燃料性质,这些新型分子与典型燃料JP-10和QC的质量热值和比冲相当。 展开更多
关键词 机器学习 烃类分子 高密度碳氢燃料 性质预测 高通量筛选
下载PDF
超临界压力下基于径向热物性分布的碳氢燃料流动换热特性研究
15
作者 林大森 李海旺 +3 位作者 朱剑琴 程泽源 魏颍川 胡希卓 《推进技术》 北大核心 2025年第2期187-199,共13页
针对超临界加热管内碳氢燃料径向热物性分布及其与管内对流换热之间的耦合机制,建立了二维冷却通道模型,开展了燃料入口温度为300~400 K和热流密度为0.60~0.75 MW/m^(2)工况下碳氢燃料流动换热数值模拟。研究结果表明:加热管内不同换热... 针对超临界加热管内碳氢燃料径向热物性分布及其与管内对流换热之间的耦合机制,建立了二维冷却通道模型,开展了燃料入口温度为300~400 K和热流密度为0.60~0.75 MW/m^(2)工况下碳氢燃料流动换热数值模拟。研究结果表明:加热管内不同换热现象与截面流体热物性径向分布密切相关。流体径向热物性非均匀系数峰值出现在入口换热恶化区;而换热强化现象主要源自于混合物定压比热和导热系数径向分布均匀化,增加燃料吸热的同时又加速了径向的热量传递。当截面流体导热系数径向非均匀系数为0,即导热系数径向变化梯度的方向发生改变时,沿径向的热量传递减小,壁面温度开始升高;同时,当定压比热径向非均匀系数为0时壁面温度增速变缓。燃料入口温度和壁面热流密度分别对低温主流区和高温近壁面区混合物的热物性产生显著影响;增加燃料入口温度和热流密度均能够缩短换热强化作用范围,加大管内轴向流动对换热的影响范围。 展开更多
关键词 超临界 碳氢燃料 热物性 非均匀系数 流动换热
下载PDF
Review on the Relationship Between Liquid Aerospace Fuel Composition and Their Physicochemical Properties 被引量:10
16
作者 Xiaoyu Wang Tinghao Jia +4 位作者 Lun Pan Qing Liu Yunming Fang Ji-Jun Zou Xiangwen Zhang 《Transactions of Tianjin University》 EI CAS 2021年第2期87-109,共23页
The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operat... The development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels.However,the measurement of fuel properties is time-consuming,cost-intensive,and limited to the operating conditions.The physicochemical properties of aerospace fuels are directly infl uenced by chemical composition.Thus,a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future.This work summarized the eff ects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties,including density,net heat of combustion(NHOC),low-temperature fl uidity(viscosity and freezing point),fl ash point,and thermal-oxidative stability.Several correlations and predictions of fuel properties from chemical composition were reviewed.Additionally,we correlated the fuel properties with hydrogen/carbon molar ratios(n H/C)and molecular weight(M).The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density,NHOC,viscosity and eff ectiveness for the design,manufacture,and evaluation of aviation hydrocarbon fuels. 展开更多
关键词 Liquid hydrocarbon fuel Physicochemical properties COMPOSITION Molecular structure fuel properties correlation
下载PDF
高超声速飞行器内流道燃料超声速气膜防热/减阻协同技术研究进展
17
作者 左婧滢 章思龙 +2 位作者 韦健飞 李欣 鲍文 《推进技术》 北大核心 2025年第1期1-19,共19页
燃料超声速气膜防热/减阻协同技术是能够同时实现高超声速飞行器内流道防热和减阻的重要手段。本文首先论述了高超声速飞行器内流道面临的防热减阻需求和挑战,在此基础上进一步介绍了高超声速飞行器内流道热防护技术、高超声速飞行器内... 燃料超声速气膜防热/减阻协同技术是能够同时实现高超声速飞行器内流道防热和减阻的重要手段。本文首先论述了高超声速飞行器内流道面临的防热减阻需求和挑战,在此基础上进一步介绍了高超声速飞行器内流道热防护技术、高超声速飞行器内流道减阻技术、燃料超声速气膜防热/减阻协同技术的提出及基本原理,进而针对高超声速飞行器内流道燃料超声速气膜防热/减阻协同技术梳理了相关研究进展和结论。目前,相关研究已经证实了燃料超声速气膜防热和减阻协同的可行性,并且揭示了燃料超声速气膜防热减阻机理及防热/减阻协同特性,但总体而言,国内外对于燃料超声速气膜防热/减阻协同技术的研究相对较少,仍存在许多方面值得深入的探讨和研究,文章最后就未来的研究提出了几点建议。 展开更多
关键词 超燃冲压发动机 氢燃料 碳氢燃料 超声速气膜 防热 减阻 综述
下载PDF
Alternative Fuels Derived from Solid Waste Plastics
18
作者 M. Sarker 《Journal of Environmental Science and Engineering》 2011年第3期316-322,共7页
The demand for fossil fuel is at an all time high worldwide. Annually-30 billion barrels of petroleum is being consumed worldwide. In this busy society, transportation is vital and, for transportation, petroleum is a ... The demand for fossil fuel is at an all time high worldwide. Annually-30 billion barrels of petroleum is being consumed worldwide. In this busy society, transportation is vital and, for transportation, petroleum is a requirement. All the major forms of business, agricultural, exports and imports depend on transportation. There are three forms of major transportation: by ground, air and sea. These transportations require petroleum to function. Vehicles in the road require gasoline/diesel, airway transportation requires aviation fuel and sea transportation requires fuel oil and other forms of fuels. For not only transportation but, petroleum is required to make all kind of daily use plastics. If the consumption of petroleum continues this way, it will be finished in the near future. Emissions released from evaporation and combustion of these fuel contribute to many environmental and health problems, including emitting greenhouse gases that contribute immensely to global warming. Annually-7 billion tons of carbon is released to the environment due to burning of petroleum. Moreover, when the plastics are discarded into the landfill, it becomes waste plastic and since plastic is non-biodegradable, it can remain in the landfill for a long time. Waste plastics presence in the landfill causes environmental problems for example, it can cause soil to decay, pollute underground water resource and cause land to be infertile. Alternative source of energy created from solar, wind, hydrogen fuel, biomass fuel, bio-diesel, green diesel, bio-ethanol, and geo-thermal has been proposed as a solution to these problems and in future with further research, these alternative sources will play an important role in the field of alternative energy. 展开更多
关键词 ALTERNATIVE energy waste plastic hydrocarbon fuel NSR fuel thermal cracking.
下载PDF
Generation of Transportation Fuel from Solid Municipal Waste Plastics
19
作者 M. Sarker M.M. Rashid A. Zaman and M. Molla 《Journal of Environmental Science and Engineering》 2011年第1期57-62,共6页
Transportation fuels derived from imported fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation a... Transportation fuels derived from imported fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation and combustion of these fuels contribute to a range of environmental and health problems, causing poor air quality and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems, and many fuels are being developed based on biomass and other renewable sources. Natural State Research, Inc. proposes a different alternative hydrocarbon fuel which is produced from abundant waste plastic materials. This fuel burns more efficiently and cleaner than commercial gasoline and diesel. The process exists to efficiently convert waste plastic into a reliable low cost source of fuel. 展开更多
关键词 Waste plastic hydrocarbon fuel transportation fuel catalytic cracking gas chromatography differential scanning calorimetry.
下载PDF
Using KELEA (Kinetic Energy Limiting Electrostatic Attraction) to Improve the Efficiency of Fuel Combustion 被引量:1
20
作者 W. John Martin 《Open Journal of Air Pollution》 2017年第3期103-116,共14页
There are many reports of devices and fuel additives being able to enhance the performance of automobiles and other forms of transportation that rely upon the combustion of gasoline or diesel fuels. The claims extend ... There are many reports of devices and fuel additives being able to enhance the performance of automobiles and other forms of transportation that rely upon the combustion of gasoline or diesel fuels. The claims extend from increased mileage and power to significant reductions in toxic exhaust emissions of carbon monoxide and unburnt hydrocarbons. Progress towards more widespread applications of means of improving fuel efficiency has been impeded by the lack of a coherent explanation of the mechanism of action. Fuel combustion allows for the conversion of much of the available chemical energy in volatile hydrocarbons to mechanical energy, which moves the pistons within an engine. It is proposed that the amount of chemical energy in hydrocarbons can be increased by the absorption of an environmental force termed KELEA (kinetic energy limiting electrostatic attraction). In addition to providing greater mechanical energy with relatively less heat output, the combustion of KELEA activated fuels proceeds further with less toxic emissions of carbon monoxide and unburnt hydrocarbons from incomplete combustion. KELEA activation of fuels should become standard practice in the transportation industry, with potential additional benefits in slowing the rate of global warming. 展开更多
关键词 KELEA Chemistry Transportation hydrocarbons Combustion fuel EFFICIENCY Air Pollution Exhaust Carbon MONOXIDE Gasoline Diesel Global WARMING PHOTOSYNTHESIS Hydrogen Electrical CHARGES
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部