期刊文献+
共找到1,601篇文章
< 1 2 81 >
每页显示 20 50 100
Simulation of nanofluid natural convection based on single-particle hydrodynamics in energy-conserving dissipative particle dynamics(eDPD)
1
作者 Wei LU Shuo CHEN +1 位作者 Zhiyuan YU Jiayi ZHAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1429-1446,共18页
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ... In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions. 展开更多
关键词 single-particle hydrodynamics energy-conserving dissipative particle dynamics(eDPD) nanoparticle NANOFLUID heat transfer
下载PDF
A modified smoothed particle hydrodynamics method considering residual stress for simulating failure and its application in layered rock mass
2
作者 XIA Chengzhi SHI Zhenming KOU Huanjia 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2091-2112,共22页
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat... Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses. 展开更多
关键词 Smoothed particle hydrodynamics Cracking strategy Residual stress Layered rock Crack propagation
下载PDF
An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications
3
作者 SHEN Zhong-xiang WANG Wen-qing +2 位作者 XU Cheng-yue LUO Jia-xin LIU Ren-wei 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期467-482,共16页
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP... In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure. 展开更多
关键词 common-node DEM-SPH fluid-structure interaction discrete element method smoothed particle hydrodynamics
下载PDF
A flexible multiscale algorithm based on an improved smoothed particle hydrodynamics method for complex viscoelastic flows
4
作者 Jinlian REN Peirong LU +2 位作者 Tao JIANG Jianfeng LIU Weigang LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1387-1402,共16页
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ... Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results. 展开更多
关键词 multiscale method improved smoothed particle hydrodynamics(SPH) dissipative particle dynamics(DPD) multiscale universal interface(MUI) complex viscoelastic flow
下载PDF
An Updated Lagrangian Particle Hydrodynamics (ULPH)-NOSBPD Coupling Approach forModeling Fluid-Structure Interaction Problem
5
作者 Zhen Wang Junsong Xiong +3 位作者 Shaofan Li Xin Lai Xiang Liu Lisheng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期491-523,共33页
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro... A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction. 展开更多
关键词 Fluid-structure interaction(FSI) updated lagrangian particle hydrodynamics PERIDYNAMICS meshfree method
下载PDF
Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves
6
作者 Mingming Zhao Jialong Jiao 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1045-1061,共17页
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to... Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships. 展开更多
关键词 LNG carrier tank sloshing SEAKEEPING inner and external fluid coupling Smoothed Particle hydrodynamics(SPH)
下载PDF
Updated Lagrangian Particle Hydrodynamics (ULPH)Modeling of Natural Convection Problems
7
作者 Junsong Xiong Zhen Wang +3 位作者 Shaofan Li Xin Lai Lisheng Liu Xiang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期151-169,共19页
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t... Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems. 展开更多
关键词 Updated Lagrangian particle hydrodynamics(ULPH) natural convection meshless methods higher order Laplacian model
下载PDF
On the Vacuum Hydrodynamics of Moving Bodies—The Theory of General Singularity
8
作者 Alessandro Rizzo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期875-905,共31页
The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-E... The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality. 展开更多
关键词 Planck Mass GRAVITY Light PHONONS Phononic Field Vacuum hydrodynamics Bose-Einstein Condensate PHONONS Quantum Vacuum Unification GRAVITY Dark Matter Dark Energy Theory of General Singularity
下载PDF
Numerical Investigation of Land Reclamation Effects on Hydrodynamics and Mangroves in Shacheng Bay for the Last 36 Years
9
作者 WU Zetao YU Huaming +2 位作者 SHOLA Ayinde Akeem CHANG Xiaofeng JIANG Wanjun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第6期1436-1448,共13页
Since the 1980s,the robust economic growth of China has prompted extensive land reclamation projects along its coastline,notably affecting local hydrodynamics and resulting in ecological repercussions.Using a nearshor... Since the 1980s,the robust economic growth of China has prompted extensive land reclamation projects along its coastline,notably affecting local hydrodynamics and resulting in ecological repercussions.Using a nearshore finite volume ocean model,we constructed a hydrodynamic model for Shacheng Bay,a southeastern coastal region with a winding and narrow entrance.We examined the hydrodynamic changes and mangrove dynamics over the past 36 years and the relationship between hydrodynamic alterations and mangrove degradation.Simulation results reveal that extensive reclamation projects between 1984 and 2000 weakened the current in Shacheng Bay,leading to decreased water exchange capacity and a significant reduction in mangrove area from 0.3 to 0.06km^(2).During this period,over 37% of mangrove degradation was ascribed to time-changing hydrodynamic variables without the direct influence of land reclamation.The results also highlight the changes in local hydrodynamics and water exchange patterns that adversely influenced mangrove growth.From 2000 to 2020,there were minimal coastline changes in Shacheng Bay,demonstrating reduced land reclamation activities.This stopped the further weakening trend of the currents,with a slight increase during ebb tides,while the residual current continued to weaken due to the decreasing tidal prism and water exchange capacity.The mangrove area partially recovered during this period,expanding from 0.06 to 0.11 km^(2),predominantly in new areas instead of where mangroves disappeared from 1984 to 2000.This work underlines the intricate relationship between land reclamation,hydrodynamics,and mangrove ecosystems,underscoring the need for sustainable coastal development strategies. 展开更多
关键词 RECLAMATION HYDRODYNAMIC MANGROVE water exchange
下载PDF
Effect of length-width ratio of rounded rectangle aquaculture tank in dual-diagonal-inlet layout on hydrodynamics
10
作者 Meng LI Xiaozhong REN +4 位作者 Shupeng DU Wei SUN Chenxu ZHAO Hangfei LIU Xianying SHI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1695-1709,共15页
To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters... To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks. 展开更多
关键词 aquaculture tank length-width ratio computational fluid dynamic hydrodynamic
下载PDF
Simulation of mould filling process using smoothed particle hydrodynamics 被引量:4
11
作者 何毅 周照耀 +1 位作者 曹文炅 陈维平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2684-2692,共9页
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu... The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process. 展开更多
关键词 high pressure die casting (HPDC) smoothed particle hydrodynamics (SPH) filling process moving least squares method
下载PDF
Smoothed particle hydrodynamics modeling and simulation of foundry filling process 被引量:2
12
作者 曹文炅 周照耀 蒋方明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2321-2330,共10页
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment... A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development. 展开更多
关键词 smoothed particle hydrodynamics foundry filling process composite boundary treatment water analog experiment
下载PDF
Leaching hydrodynamics of weathered elution-deposited rare earth ore 被引量:20
13
作者 田君 池汝安 +3 位作者 朱国才 徐盛明 邱欣 张志庚 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期434-437,共4页
Both porosity ( φ ) and permeability ( k ) of the weathered elution deposited rare earth ores are basic hydrodynamic parameters for RE leaching. The relationship between k and φ of two typical rare earth ores of Sou... Both porosity ( φ ) and permeability ( k ) of the weathered elution deposited rare earth ores are basic hydrodynamic parameters for RE leaching. The relationship between k and φ of two typical rare earth ores of South China in the packed bed was investigated by measuring the flow ( Q ) under various leaching pressure difference (Δ p ). The experimental results show that the relationship between k and φ is unique, moreover the relationship between Q and Δ p is in accord with the Darcy’s law. The effects of the type of ores, the leaching reagents and its concentration, the granule ore size on the leaching permeability have also been investigated. It is demonstrated that k H (for heavy RE ore, k H=35.98?mm 2)> k M H (for middle heavy RE ore, k M H =28.50?mm 2), whereas k (NH 4NO 3)> k (NH 4Cl)> k [(NH 4) 2SO 4], and the k value increases with increasing leaching reagents concentration and granule ore size( k 0.60~0.75?mm =99.96?mm 2, k 0.125~0.60?mm =11.83?mm 2, k 0.074~0.125?mm =0.84?mm 2). [ 展开更多
关键词 hydrodynamics rare earth ore LEACH POROSITY PERMEABILITY
下载PDF
Application of CFD Modeling to Hydrodynamics of CycloBio Fluidized Sand Bed in Recirculating Aquaculture Systems 被引量:8
14
作者 LIU Yao SONG Xiefa +1 位作者 LIANG Zhenlin PENG Lei 《Journal of Ocean University of China》 SCIE CAS 2014年第1期115-124,共10页
To improve the efficiency of a CycloBio fluidized sand bed(CB FSB) in removal of dissolved wastes in recirculating aquaculture systems, the hydrodynamics of solid-liquid flow was investigated using computational fluid... To improve the efficiency of a CycloBio fluidized sand bed(CB FSB) in removal of dissolved wastes in recirculating aquaculture systems, the hydrodynamics of solid-liquid flow was investigated using computational fluid dynamics(CFD) modeling tools. The dynamic characteristics of silica sand within the CB FSB were determined using three-dimensional, unsteady-state simulations with the granular Eulerian multiphase approach and the RNG k-ε turbulence model, and the simulation results were validated using available lab-scale measurements. The bed expansion of CB FSB increased with the increase in water inflow rate in numerical simulations. Upon validation, the simulation involving 0.55 mm particles, the Gidaspow correlation for drag coefficient model and the Syamlal-O'Brien correlation for kinetic granular viscosity showed the closest match to the experimental results. The volume fraction of numerical simulations peaked as the wall was approached. The hydrodynamics of a pilot-scale CB FSB was simulated in order to predict the range of water flow to avoid the silica sand overflowing. The numerical simulations were in agreement with the experimental results qualitatively and quantitatively, and thus can be used to study the hydrodynamics of solid-liquid multiphase flow in CB FSB, which is of importance to the design, optimization, and amplification of CB FSBs. 展开更多
关键词 AQUACULTURE water recirculating fluidized SAND BED hydrodynamics NUMERICAL simulation MULTIPHASE flow
下载PDF
Numerical Investigation of Penetration in Ceramic/Aluminum Targets Using Smoothed Particle Hydrodynamics Method and Presenting a Modified Analytical Model 被引量:8
15
作者 Ehsan Hedayati Mohammad Vahedi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第3期295-323,共29页
Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for... Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets.In the present research,a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets.In order to investigate and evaluate accuracy of the presented analytic model,obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results.The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics(SPH)implemented utilizing ABAQUS Software.Results indicated that,with increasing initial velocity and ceramic thickness and decreasing support layer thickness,the radius of ceramic cone decreases;this ends up increasing residual velocity of the projectile and penetration time and extending the area across which the pressure is distributed.These findings indicate enhanced levels of target energy absorption and the required energy for bending and tensioning the target.As such,it can be observed that,at the same thickness and areal density,the ceramic target has its efficiency enhanced with increasing ceramic thickness and decreasing the support layer thickness.Finally,the results revealed that the associated data with SPH confirm the modified analytic model at higher accuracy than the Florence’s analytic model. 展开更多
关键词 Smoothed particle hydrodynamics Florence’s ANALYTIC MODEL MODIFIED analytical MODEL energy absorption ABAQUS PENETRATION
下载PDF
Learning from Fish: Kinematics and Experimental Hydrodynamics for Roboticists 被引量:8
16
作者 George V.Lauder Peter G.A.Madden 《International Journal of Automation and computing》 EI 2006年第4期325-335,共11页
Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we pres... Over the past 20 years, experimental analyses of the biomechanics of locomotion in fishes have generated a number of key findings that are relevant to the construction of biomimetic fish robots. In this paper, we present 16 results from recent experimental research on the mechanics, kinematics, fluid dynamics, and control of fish locomotion that summarize recent work on fish biomechanics. The findings and principles that have emerged from biomechanical studies of fish locomotion provide important insights into the functional design of fishes and suggest specific design features relevant to construction of robotic fish-inspired vehicles that underlie the high locomotor performance exhibited by fishes. 展开更多
关键词 Fish locomotion ROBOTICS FIN hydrodynamics KINEMATICS
下载PDF
Experimental and numerical investigations of scale-up effects on the hydrodynamics of slurry bubble columns 被引量:4
17
作者 Zhaoqi Li Xiaoping Guan +2 位作者 Lijun Wang Youwei Cheng Xi Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期963-971,共9页
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid con... Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data. 展开更多
关键词 BUBBLE COLUMN CFD hydrodynamics MULTIPHASE flow SCALING-UP Solid CONCENTRATION
下载PDF
Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model 被引量:4
18
作者 Xiangwei Dong Jianlin Liu +1 位作者 Sai Liu Zengliang Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期32-44,I0002,共14页
Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is p... Numerical simulation of the morphology of a droplet deposited on a solid surface requires an efficient description of the three-phase contact line. In this study, a simple method of implementing the contact angle is proposed, combined with a robust smoothed particle hydrodynamics multiphase algorithm (Zhang 2015). The first step of the method is the creation of the virtual liquid-gas interface across the solid surface by means of dummy particles, thus the calculated surface tension near the triple point serves to automatically modulate the dynarnic contact line towards the equilibrium state. We simulate the evolution process of initially square liquid lumps on fiat and curved surfaces. The predictions of droplet profiles are in good agreement with the analytical solutions provided that the macroscopic contact angle is accurately implemented. Compared to the normal correction method, the present method is straightforward without the need to manually alter the normal vectors. This study presents a robust algorithm capable of capturing the physics of the static welling. It may hold great potentials in bio-inspired superhydrophobic surfaces, oil displacement, microfluidics, ore floatation, etc. 展开更多
关键词 Smoothed particle hydrodynamics Virtual interface method MULTIPHASE flow MACROSCOPIC contact angle DROPLET morphology Curved surfaces
下载PDF
Hydrodynamics and Mass Transfer in a Modified Three-phase Airlift Loop Reactor 被引量:5
19
作者 Liu Mengxi Lu Chunxi +2 位作者 Shi Mingxian Ge Baoli Huang Jie 《Petroleum Science》 SCIE CAS CSCD 2007年第3期91-96,共6页
A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mas... A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison. 展开更多
关键词 Airlift loop reactor hydrodynamics mass transfer FLUIDIZATION multiphase flow
下载PDF
Research on Hydrodynamics Model Test for Deepsea Open-Framed Remotely Operated Vehicle 被引量:7
20
作者 范士波 连琏 任平 《China Ocean Engineering》 SCIE EI 2012年第2期329-339,共11页
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong... This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV), which is being researched and developed by Shanghai Jiao Tong University. Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm. The scaled model of ROV was constructed by 1:1.6. Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test. And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions. Rotation control motion was simulated to verify spatial model proposed. Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment, and accomplish some more challengeable and practical missions. 展开更多
关键词 Remotely Operated Vehicle (ROV) model test hydrodynamics coefficients motion modeling
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部