Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and ...Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and poor kinetic stability of hydrogen generation from NaBH_(4) hydrolysis limits its application.There are two main factors influencing the kinetics stability of hydrogen generation from NaBH_(4).One factor is that the alkaline byproducts(NaBO_(2)) of the hydrolysis reaction can increase the pH of the solution,thus inhibiting the reaction process.It mainly happens in the NaBH_(4) solution hydrolysis system.Another factor is that the monotonous increase in reaction temperature leads to uncontrollable and unpredictable hydrolysis rates in the solid NaBH_(4) hydrolysis system.This is due to the excess heat generated from this exothermic reaction in the initial reaction of NaBH_(4) hydrolysis.In this perspective,we summarize the latest research progress in hydrogen generation from NaBH_(4) and emphasize the design principles of catalysts for hydrogen generation from NaBH_(4) solution and solid state NaBH_(4).The importance of carbon as catalyst support material for NaBH_(4) hydrolysis is also highlighted.展开更多
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S...Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.展开更多
Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvoth...Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvothermal and hydrogen-reduction methods.Characterization by transmission electron microscopy and X-ray diffraction indicated that the amount and size of the WO3-x QDs could be tuned by modulating the addition of the W precursor.Evidence from X-ray photoelectron spectroscopy and photoluminescence spectroscopy suggested that the hydrogen reduction of the composite induced the formation of oxygen vacancy(W^5+/Vo) defects in WO3.These defects led to ohmic contact between WO3-x and TiO2,which altered the charge-transfer pathway from type Ⅱ heterojunction to Z-scheme,and maintained the highly reductive and oxidative ability of TiO2 and WO3-x,respectively.Therefore,the Z-scheme sample showed 1.3-fold higher photoactivity than pure TiO2 in hydrogen generation.These results suggest that the formation of W^5+/Vo defects at the interface is highly beneficial for the fabrication of Z-scheme photocatalysts.展开更多
A novel composition of AlLi/NaBH4 mixture activated by common Ni powder in water for hydrogen generation was investigated. The composition presents good hydrogen generation performance and an optimized Al-10% Li-10% N...A novel composition of AlLi/NaBH4 mixture activated by common Ni powder in water for hydrogen generation was investigated. The composition presents good hydrogen generation performance and an optimized Al-10% Li-10% Ni/NaBH4 mixture (mass ratio of 3:1) generates 1540 mL/g hydrogen with 96% efficiency at 333 K. Ni powder exhibits dual catalytic effects on the hydrolysis of AlLi/NaBH4 mixture due to the formation of Ni2B in the hydrolysis process. The Ni2B deposited on aluminum surface could act as a cathode of a micro galvanic couple. Ni2B/Al(OH)3 also has a synergistic effect on NaBH4 hydrolysis. Good hydrogen generation performance with stable pH value of hydrolysis byproduct Al(OH)3/NaBO2-2H2O was obtained with successive additions of Al-Li-Ni /NaBH4 mixture into fixed water.展开更多
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor...A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.展开更多
The development of semiconductor photocatalysts with highly reactive facets exposed has great potential to improve their photocatalytic reactivity. We report the synthesis of mesoporous rutile TiO 2 single crystals wi...The development of semiconductor photocatalysts with highly reactive facets exposed has great potential to improve their photocatalytic reactivity. We report the synthesis of mesoporous rutile TiO 2 single crystals with tunable ratios of {110} and {111} facets through the seeded-template hydrothermal method. With increasing the amount of morphology controlling agent NaF,the facet ratio of {111} to {110} increases,and eventually the mesoporous rutile TiO 2 single crystals with wholly exposed {111} reactive facets are obtained. The resultant faceted mesoporous single crystals exhibit a superior photocatalytic performance of hydrogen evolution to mesoporous single crystals with a large percentage of thermodynamically stable {110} facets,as well as the solid rutile single crystals. ? 2015,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.展开更多
Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of eff...Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.展开更多
Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an ove...Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.展开更多
Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-450 s. The gas and liquid...Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-450 s. The gas and liquid products were analyzed by GC/TCD, and TOC analyzer. The main gas products were H2, CH4, CO and CO2. Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency, and lower temperature favored the production of H2. The effects of KOH catalyst on gas product composition were studied, and gasification efficiency were analyzed. The TOC removal efficiency (RTOC), carbon gasification ratio (RCG) and hydrogen gasification ratio (RHG) were up to 96.00%, 95.92% and 126.40% at 873 K and 60 s, respectively, which suggests PVA can be completely gasified in SCW. The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment ofPVA wastewater.展开更多
Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolys...Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.展开更多
Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the fiel...Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article, catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO_(2)@N-C(CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoO_x/TiO_(2)@N-C(COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 m L min^(-1) g_(Co)^(-1) is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co, Co_(3)O_(4) and TiO_(2) promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources.展开更多
The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-...The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.展开更多
Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly aff...Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation.展开更多
In this work,Ni-Bi-B alloy has been synthesized via chemical synthesis method.A new kind of Al-InCl3-(Ni-Bi-B)composite has been prepared by high energy mechanical ball grinding A1 powder with additives.Results show t...In this work,Ni-Bi-B alloy has been synthesized via chemical synthesis method.A new kind of Al-InCl3-(Ni-Bi-B)composite has been prepared by high energy mechanical ball grinding A1 powder with additives.Results show that the doped Ni-Bi-B alloy can significantly improve the hydrogen generation performance of Al-InCl3 and the catalytic activity is enhanced with the increasing content of Bi in Ni-Bi-B alloy.Under optimal conditions,the hydrogen generation yield and conversion yield of Al-InCl3-(Ni-Bi-B)reached1196.8 mL g^-1 and 100.0%at room temperature,respectively.Mechanism study shows five kinds of active sites,such as the fresh surface/defect of Al particle,Al-AlCl3,Al-In,Al-Bi/B and Al-Ni/B produced during the ball milling process.Their synergistic effect enhances the hydrogen generation performance of AlInCl3-(Ni-Bi-B)remarkably.In general,the proposed Al-InCl3-(Ni-Bi-B)composite is possible to serve as hydrogen generation material for fuel cells.展开更多
We reported an inexpensive and high-efficiency hydrogen generation method from NaBH4 hydrolysis promoted by oxalic acid.NaBH4 and H2C2O4 were premixed and hydrogen generation was initiated by adding water into the sol...We reported an inexpensive and high-efficiency hydrogen generation method from NaBH4 hydrolysis promoted by oxalic acid.NaBH4 and H2C2O4 were premixed and hydrogen generation was initiated by adding water into the solid mixture.H2C2O4 was selected as the acid promotor due to its solid state and low mass per proton.The effect of reactant ratio on the hydrogen yield and hydrogen storage density was investigated.With optimized reactant ratio,high gravimetric hydrogen storage up to 4.4wt%based on all the reactants can be achieved with excellent hydrogen generation kinetics.展开更多
Porous biomass electrodes have emerged as a critical material for electrocatalytic hydrogen evolution reaction(HER).However,most approaches for synthesizing porous electrodes from biomass require high energy consumpti...Porous biomass electrodes have emerged as a critical material for electrocatalytic hydrogen evolution reaction(HER).However,most approaches for synthesizing porous electrodes from biomass require high energy consumption,which is resulted from the smash of biomass and the undergoing of serial assembly.Herein,a self-supported wood-derived"breathable"membrane is utilized directly as electrodes for highefficient HER via an assembly of Fe-doped NiP alloys.The well-designed hierarchical porous structures in natural wood membrane(NWM)are unusually beneficial for electrolytes accessibility and hydrogen gas removal.The obtained wood-derived membrane exhibits a high electrocatalytic activity and good cycling durability in acidic and alkaline electrolytes.Remarkably,the Fe_(0.074) NiP alloys/NWM electrode affords a large current density of 100 m A cm^(-2) at extremely low overpotentials of 168 mV in acidic electrolyte and174 m V in alkaline electrolyte.Density functional theory calculations unveil that the Fe atom doped in NiP alloys can create much more charge accumulation around Fe and Ni active sites,which helps decrease the △GH_(*)and △G_(H2O)and significantly promote the HER process.This new insight will promote further explorations of economic,high-efficient,and biodegradable wood-derived electrocatalysts for HER.展开更多
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H) generation from copious hydrogen sulfide(HS). CBN has been synthesized by solid state...Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H) generation from copious hydrogen sulfide(HS). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from HS has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.展开更多
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array includi...Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array including Ni_2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction(HER) in a wide pH range. In alkaline media, it can generate current densities of 10, 20 and 100 mA cm^(-2) at low overpotentials of only-101.9,-142.0 and-207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.展开更多
Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-...Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.展开更多
A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of pho...A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of photocurrent is demonstrated in comparison with a planar one fabricated from the same parent wafer. Under identical illumination conditions in HBr solution, the incident photon conversion efficiency (IPCE) shows an enhancement with a factor of 3, which even exceed 54% at 400 nm wavelength. We believe the enhancement is attributed to several facts including improvement in absorption, reacting area, carder localization and carrier lifetime.展开更多
基金supported by MOST of China(No.2021YFB4000603)NSFC(No.22179002 and 51971004).
文摘Sodium borohydride(NaBH_(4)) is considered as the most potential hydrogen storage material for portable proton exchange membrane fuel cells(PEMFC)because of its high theoretical hydrogen capacity.However,the slow and poor kinetic stability of hydrogen generation from NaBH_(4) hydrolysis limits its application.There are two main factors influencing the kinetics stability of hydrogen generation from NaBH_(4).One factor is that the alkaline byproducts(NaBO_(2)) of the hydrolysis reaction can increase the pH of the solution,thus inhibiting the reaction process.It mainly happens in the NaBH_(4) solution hydrolysis system.Another factor is that the monotonous increase in reaction temperature leads to uncontrollable and unpredictable hydrolysis rates in the solid NaBH_(4) hydrolysis system.This is due to the excess heat generated from this exothermic reaction in the initial reaction of NaBH_(4) hydrolysis.In this perspective,we summarize the latest research progress in hydrogen generation from NaBH_(4) and emphasize the design principles of catalysts for hydrogen generation from NaBH_(4) solution and solid state NaBH_(4).The importance of carbon as catalyst support material for NaBH_(4) hydrolysis is also highlighted.
基金financially supported by the National Natural Science Foundation of China (No.52106259)the Fundamental Research Funds for the Central Universities (2024MS013)Key Research and Development Program of Shaanxi (Program No.2022LL-JB-08)。
文摘Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.
基金supported by the National Natural Science Foundation of China (21506156, 21676193)the Tianjin Municipal Natural Science Foundation (15JCZDJC37300, 16JCQNJC05200)~~
文摘Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvothermal and hydrogen-reduction methods.Characterization by transmission electron microscopy and X-ray diffraction indicated that the amount and size of the WO3-x QDs could be tuned by modulating the addition of the W precursor.Evidence from X-ray photoelectron spectroscopy and photoluminescence spectroscopy suggested that the hydrogen reduction of the composite induced the formation of oxygen vacancy(W^5+/Vo) defects in WO3.These defects led to ohmic contact between WO3-x and TiO2,which altered the charge-transfer pathway from type Ⅱ heterojunction to Z-scheme,and maintained the highly reductive and oxidative ability of TiO2 and WO3-x,respectively.Therefore,the Z-scheme sample showed 1.3-fold higher photoactivity than pure TiO2 in hydrogen generation.These results suggest that the formation of W^5+/Vo defects at the interface is highly beneficial for the fabrication of Z-scheme photocatalysts.
基金Projects (21003112, 21003111) supported by the National Natural Science Foundation of ChinaProject (Y4090507) supported by the Zhejiang Basic Research Program, China
文摘A novel composition of AlLi/NaBH4 mixture activated by common Ni powder in water for hydrogen generation was investigated. The composition presents good hydrogen generation performance and an optimized Al-10% Li-10% Ni/NaBH4 mixture (mass ratio of 3:1) generates 1540 mL/g hydrogen with 96% efficiency at 333 K. Ni powder exhibits dual catalytic effects on the hydrolysis of AlLi/NaBH4 mixture due to the formation of Ni2B in the hydrolysis process. The Ni2B deposited on aluminum surface could act as a cathode of a micro galvanic couple. Ni2B/Al(OH)3 also has a synergistic effect on NaBH4 hydrolysis. Good hydrogen generation performance with stable pH value of hydrolysis byproduct Al(OH)3/NaBO2-2H2O was obtained with successive additions of Al-Li-Ni /NaBH4 mixture into fixed water.
文摘A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.
基金supported by the National Basic Research Program of China(973 Program2014CB239401)+3 种基金the National Natural Science Foundation of China(5142221051172243)the Deanship of Scientific Research(50-130-35-HiC i)King Abdulaziz University~~
文摘The development of semiconductor photocatalysts with highly reactive facets exposed has great potential to improve their photocatalytic reactivity. We report the synthesis of mesoporous rutile TiO 2 single crystals with tunable ratios of {110} and {111} facets through the seeded-template hydrothermal method. With increasing the amount of morphology controlling agent NaF,the facet ratio of {111} to {110} increases,and eventually the mesoporous rutile TiO 2 single crystals with wholly exposed {111} reactive facets are obtained. The resultant faceted mesoporous single crystals exhibit a superior photocatalytic performance of hydrogen evolution to mesoporous single crystals with a large percentage of thermodynamically stable {110} facets,as well as the solid rutile single crystals. ? 2015,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.
基金supported by Ministry of Economy, Trade and Industry (METI)National Institute of Advanced Industrial Science Technology (AIST) and Kobe University
文摘Liquid chemical hydrides, which store hydrogen in the form of chemical bonds, are considered one of the most promising classes of hydrogen storage materials. Their application depends heavily on the development of efficient catalytic systems. Gold‐containing metal nanoparticles have exhibited excellent catalytic performance for hydrogen generation from liquid chemical hydrides. The present mini‐review focuses on recent developments in hydrogen generation from liquid chemical hydrides using gold‐nanoparticle and gold‐containing heterometallic nanoparticle catalysts.
基金Project(51876224)supported by the National Natural Science Foundation of ChinaProject(2020CX008)supported by the Innovation-Driven Project of Central South University,China。
文摘Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.
基金Project supported by the National Natural Science Foundation of China(No.20277010)the Hi-Tech Research and Development Program(863) of China(No.2006AA062378).
文摘Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-450 s. The gas and liquid products were analyzed by GC/TCD, and TOC analyzer. The main gas products were H2, CH4, CO and CO2. Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency, and lower temperature favored the production of H2. The effects of KOH catalyst on gas product composition were studied, and gasification efficiency were analyzed. The TOC removal efficiency (RTOC), carbon gasification ratio (RCG) and hydrogen gasification ratio (RHG) were up to 96.00%, 95.92% and 126.40% at 873 K and 60 s, respectively, which suggests PVA can be completely gasified in SCW. The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment ofPVA wastewater.
基金supported by the Key Project of Chinese Ministry of Education (No. 208076)Shandong Provincial Natural Science Foundation,China (No. ZR2010EM069)the Open Project of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology
文摘Co/Al2O3 catalyst is prepared with an impregnation-chemical reduction method and used to catalyze the methanolysis of sodium borohydride (NaBH 4) for hydrogen generation.At solution temperature of 0 C,the methanolysis reaction can be effectively accelerated using Co/Al2O3 catalyst and provide a desirable hydrogen generation rate,which makes it suitable for applications under the circumstance of low environmental temperature.The byproduct of methanolysis reaction is analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).The characterization results indicate that methanol can be easily recovered after methanolysis reaction by hydrolysis of the methanolysis byproduct,NaB(OCH 3) 4.The catalytic activity of Co/Al2O3 towards NaBH 4 methanolysis can be further improved by appropriate calcination treatment.The catalytic methanolysis kinetics and catalyst reusability are also studied over the Co/Al2O3 catalyst calcined at the optimized temperature.
基金Financial supports from the National Natural Science Foundation of China(No.51871090,U1804135,51671080,21401168 and 51471065)Plan for Scientific Innovation Talent of Henan Province(No.194200510019)are acknowledged.
文摘Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article, catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO_(2)@N-C(CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoO_x/TiO_(2)@N-C(COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 m L min^(-1) g_(Co)^(-1) is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co, Co_(3)O_(4) and TiO_(2) promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources.
基金Projects(51571112,51171079,51471087) supported by the National Natural Science Foundation of ChinaProject(13KJA430003) supported by Jiangsu Higher Education Institutions of China+1 种基金Project supported by Qing Lan Project,ChinaProject supported by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,China
文摘The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(grant nos.2021R1C1C1007844,2021M3I3A1085039,2020R1F1A1061505,and 2020R1C1C1012014).
文摘Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation.
基金supported by the National Key R&D Program of China(2018YFB1501200,MOST)the National Natural Science Foundation of China(5187011196,U1501242 and 51671062)+4 种基金the Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Material(2012GXNSFGA06002)Guangxi Science and Technology Project(AD17195073)Guangxi Major Science and Technology Special Project(AA17202030-1)the Guangxi Key Laboratory of Information Laboratory Foundation(161002-Z,161002-K and 161003-K)the financial support of Guangxi Advanced Functional Materials Foundation and Application Talents Small Highlands
文摘In this work,Ni-Bi-B alloy has been synthesized via chemical synthesis method.A new kind of Al-InCl3-(Ni-Bi-B)composite has been prepared by high energy mechanical ball grinding A1 powder with additives.Results show that the doped Ni-Bi-B alloy can significantly improve the hydrogen generation performance of Al-InCl3 and the catalytic activity is enhanced with the increasing content of Bi in Ni-Bi-B alloy.Under optimal conditions,the hydrogen generation yield and conversion yield of Al-InCl3-(Ni-Bi-B)reached1196.8 mL g^-1 and 100.0%at room temperature,respectively.Mechanism study shows five kinds of active sites,such as the fresh surface/defect of Al particle,Al-AlCl3,Al-In,Al-Bi/B and Al-Ni/B produced during the ball milling process.Their synergistic effect enhances the hydrogen generation performance of AlInCl3-(Ni-Bi-B)remarkably.In general,the proposed Al-InCl3-(Ni-Bi-B)composite is possible to serve as hydrogen generation material for fuel cells.
基金Funded by the Ministry of Science and Technology(MOST)of China(No.2018YFB1502104)the National Natural Science Foundation of China(No.21771006)the Equipment Development Department of People’s Republic of China Central Military Commission(Pre-research Project of the Thirteenth FiveYear Plan)(No.41421020103)。
文摘We reported an inexpensive and high-efficiency hydrogen generation method from NaBH4 hydrolysis promoted by oxalic acid.NaBH4 and H2C2O4 were premixed and hydrogen generation was initiated by adding water into the solid mixture.H2C2O4 was selected as the acid promotor due to its solid state and low mass per proton.The effect of reactant ratio on the hydrogen yield and hydrogen storage density was investigated.With optimized reactant ratio,high gravimetric hydrogen storage up to 4.4wt%based on all the reactants can be achieved with excellent hydrogen generation kinetics.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2019BC007)the Postdoctoral Science Foundation of China(No.2018M632626)+2 种基金the National Natural Science Foundation of China(No.31870535 and No.51973099)the Outstanding Youth of Natural Science in Shandong Province(JQ201713)the Taishan Scholar Program of Shandong Province,and the ARC Discovery Project(No.170103317)。
文摘Porous biomass electrodes have emerged as a critical material for electrocatalytic hydrogen evolution reaction(HER).However,most approaches for synthesizing porous electrodes from biomass require high energy consumption,which is resulted from the smash of biomass and the undergoing of serial assembly.Herein,a self-supported wood-derived"breathable"membrane is utilized directly as electrodes for highefficient HER via an assembly of Fe-doped NiP alloys.The well-designed hierarchical porous structures in natural wood membrane(NWM)are unusually beneficial for electrolytes accessibility and hydrogen gas removal.The obtained wood-derived membrane exhibits a high electrocatalytic activity and good cycling durability in acidic and alkaline electrolytes.Remarkably,the Fe_(0.074) NiP alloys/NWM electrode affords a large current density of 100 m A cm^(-2) at extremely low overpotentials of 168 mV in acidic electrolyte and174 m V in alkaline electrolyte.Density functional theory calculations unveil that the Fe atom doped in NiP alloys can create much more charge accumulation around Fe and Ni active sites,which helps decrease the △GH_(*)and △G_(H2O)and significantly promote the HER process.This new insight will promote further explorations of economic,high-efficient,and biodegradable wood-derived electrocatalysts for HER.
基金Department of Electronics and Information Technology(Deit Y),Government of India for financial supportB.P.H.E Society's Ahmednagar College Ahmednagar for financial supportNanocrystalline Materials Group C-MET for the kind support
文摘Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H) generation from copious hydrogen sulfide(HS). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from HS has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.
基金supported by the National Natural Science Foundation of China(21522602, 51672082, 91534202)the International Science and Technology Cooperation Program of China (2015DFA51220)+2 种基金the Research Project of Chinese Ministry of Education(113026A)the Program for Shanghai Youth Top-notch Talentthe Fundamental Research Funds for the Central Universities
文摘Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array including Ni_2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction(HER) in a wide pH range. In alkaline media, it can generate current densities of 10, 20 and 100 mA cm^(-2) at low overpotentials of only-101.9,-142.0 and-207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.
基金supported by China Petrochemical Corporation(SINOPEC)(Contact No.106002000284)
文摘Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.
基金supported by the Special Funds for Major State Basic Research Project of China(Grant Nos.2011CB301900,2012CB619304,and 2010CB327504)the Hi-tech Research Project of China(Grant No.2011AA03A103)+4 种基金the National Nature Science Foundation of China(Grant Nos.60990311,61274003,60936004,and 61176063)the Program for New Century Excellent Talents in University of China(Grant No.NCET-11-0229)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2011010)the Funds of Key Laboratory of China(Grant No.9140C140102120C14)the Research Funds from NJU-Yangzhou Institute of Opto-electronics of China
文摘A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of photocurrent is demonstrated in comparison with a planar one fabricated from the same parent wafer. Under identical illumination conditions in HBr solution, the incident photon conversion efficiency (IPCE) shows an enhancement with a factor of 3, which even exceed 54% at 400 nm wavelength. We believe the enhancement is attributed to several facts including improvement in absorption, reacting area, carder localization and carrier lifetime.