The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara...The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.展开更多
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ...The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.展开更多
The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production ...The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.展开更多
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy...Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81.展开更多
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to reali...The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to realize the rapid calculation of data on aircraft or in orbit,which will improve the timeliness of oil spill emergency monitoring.At the same time,the combination of spectral and spatial features can improve the accuracy of oil spill monitoring.Two ground-based experiments were designed to collect measured airborne hyperspectral data of crude oil and its emulsions,for which the multiscale superpixel level group clustering framework(MSGCF)was used to select spectral feature bands with strong separability.In addition,the double-branch dual-attention(DBDA)model was applied to identify crude oil and its emulsions.Compared with the recognition results based on original hyperspectral images,using the feature bands determined by MSGCF improved the recognition accuracy,and greatly shortened the running time.Moreover,the characteristic bands for quantifying the volume concentration of water-in-oil emulsions were determined,and a quantitative inversion model was constructed and applied to the AVIRIS image of the deepwater horizon oil spill event in 2010.This study verified the effectiveness of feature bands in identifying oil spill pollution types and quantifying concentration,laying foundation for rapid identification and quantification of marine oil spills and their emulsions on aircraft or in orbit.展开更多
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral...By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.展开更多
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b...Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.展开更多
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi...Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.展开更多
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification...Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.展开更多
To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is ba...To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.展开更多
To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in Septemb...To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in September of 2000 at Daxing'anling district of Heilongjiang Province, China. The ratio analysis of reflectance spectra (RARS) indices, which were put forward by Chappelle et al (1992), are chosen in this paper owing to their effect and simpleness against both comparison with various methods and techniques for exploration of pigment concentration and characteristics of PHI data. The correlation coefficients between RARS indices and pigment concentration of vegetation were up to 0.8. The new RARS indices modes are established in the two test areas using both PHI data and spectra of different vegetations measured in the field. The indices' parameter images of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Cars) of the test areas covered with swamp and flourish vegetation are acquired by the new RARS indices modes. Furthermore, the regional concentration of Chl a and Chl b are extracted and quantified using regression equations between RARS indices and pigment concentrations, which were built by Blackburn (1998). The results showed the physiological status and variety clearly, and are in good agreement with the distribution of vegetation in the field.展开更多
The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high...The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.展开更多
Potentially harmful cyanobacterial blooms are an emerging environmental concern in freshwater bodies worldwide. Cyanobacterial blooms are generally caused by high nutrient inputs and warm, still waters and have been a...Potentially harmful cyanobacterial blooms are an emerging environmental concern in freshwater bodies worldwide. Cyanobacterial blooms are generally caused by high nutrient inputs and warm, still waters and have been appearing with increasing frequency in water bodies used for drinking water supply and recreation, a problem which will likely worsen with a warming climate. Cyanobacterial blooms are composed of genera with known biological pigments and can be distinguished and analyzed via hyperspectral image collection technology such as remote sensing by satellites, airplanes, and drones. Here, we utilize hyperspectral microscopy and imaging spectroscopy to charac</span><u><span style="font-family:Verdana;">t</span></u><span style="font-family:Verdana;">erize and differentiate several important bloom-forming cyanobacteria genera obtained in the field during active research programs conducted by US Geological Survey and from commercial sources. Many of the cyanobacteria genera showed differences in their spectra that may be used to identify and predict their occurrence, including peaks and valleys in spectral reflectance. </span><span><span style="font-family:Verdana;">Because certain cyanobacteria, such as </span><i><span style="font-family:Verdana;">Cylindrospermum</span></i><span style="font-family:Verdana;"> or </span><i><span style="font-family:Verdana;">Dolichospe</span></i></span><i><span style="font-family:Verdana;">rmum</span></i><span style="font-family:Verdana;">, are more prone to produce cyanotoxins than others, the ability to different</span><span style="font-family:Verdana;">iate these species may help target high priority waterbodies for sampl</span><span style="font-family:Verdana;">ing. These spectra may also be used to prioritize restoration and research efforts </span><span style="font-family:Verdana;">to control cyanobacterial harmful algal blooms (CyanoHABs) and improv</span><span style="font-family:Verdana;">e water quality for aquatic life and humans alike.展开更多
Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with t...Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with the local minimizers of NMF. We present two novel initialization strategies that is based on CUR decomposition, which is physically meaningful. In the experimental test, NMF with the new initialization method is used to unmix the urban scene which was captured by airborne visible/infrared imaging spectrometer (AVIRIS) in 1997, numerical results show that the initialization methods work well.展开更多
The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological an...The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological and environmental burden.In this study,we model the total leaf N concentration(TLNC) in winter wheat constructed from hyperspectral data by considering the vertical N distribution(VND).The field hyperspectral data of winter wheat acquired during the 2013–2014 growing season were used to construct and validate the model.The results show that:(1) the vertical distribution law of LNC was distinct,presenting a quadratic polynomial tendency from the top layer to the bottom layer.(2) The effective layer for remote sensing detection varied at different growth stages.The entire canopy,the three upper layers,the three upper layers,and the top layer are the effective layers at the jointing stage,flag leaf stage,flowering stages,and filling stage,respectively.(3) The TLNC model considering the VND has high predicting accuracy and stability.For models based on the greenness index(GI),mND705(modified normalized difference 705),and normalized difference vegetation index(NDVI),the values for the determining coefficient(R2),and normalized root mean square error(nRMSE) are 0.61 and 8.84%,0.59 and 8.89%,and 0.53 and 9.37%,respectively.Therefore,the LNC model with VND provides an accurate and non-destructive method to monitor N levels in the field.展开更多
45 and 50 composite soil samples were collected, respectively, from twoagricultural fields, that were enclosed and reclaimed from coastal tidal-flat areas in 1996 and 1984respectively, in Shangyu of Zhejiang Province,...45 and 50 composite soil samples were collected, respectively, from twoagricultural fields, that were enclosed and reclaimed from coastal tidal-flat areas in 1996 and 1984respectively, in Shangyu of Zhejiang Province, China, to investigate the physico-chemicalproperties and the hyperspectral characteristics of the saline soils and to make an assessment ontheir relationships. The reflectance spectra of saline soils were measured using a spectroradiometerin laboratory. The mean spectral curves of the saline soils from the two sites different inreclamation year showed that the saline soil taken from the recently reclaimed land with highersalinity demonstrated a lower reflectance intensity in the spectral region from about 550 nm to 2300nm. In addition, nine absorption bands, i.e., 488 nm, 530 nm, 670 nm, 880 nm, 940 nm, 1400 nm, 1900nm, 2 200 nm and 2 300 nm, were chosen as the spectral bands to investigate the relationshipsbetween soil physico-chemical properties by means of Pearson correlation analysis. Finally, thefirst two principal components were calculated from nine absorption bands and used to discriminatethe saline soil samples taken from two sampled fields. The results indicate that it is feasible todetect physico-chemical properties of saline soils from fields reclaimed for varying time periods onthe basis of the hyperspectral data.展开更多
Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effect...Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effective approach to detect its presence in the early stage of infection.One potential solution is the use of Unmanned Airborne Vehicle(UAV)based hyperspectral images(HIs).UAV-based HIs have high spatial and spectral resolution and can gather data rapidly,potentially enabling the effective monitoring of large forests.Despite this,few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine.Method:To fill this gap,we used a Random Forest(RF)algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data(data directly collected from trees in the field).We compared relative accuracy of each of these data collection methods.We built our RF model using vegetation indices(VIs),red edge parameters(REPs),moisture indices(MIs),and their combination.Results:We report several key results.For ground data,the model that combined all parameters(OA:80.17%,Kappa:0.73)performed better than VIs(OA:75.21%,Kappa:0.66),REPs(OA:79.34%,Kappa:0.67),and MIs(OA:74.38%,Kappa:0.65)in predicting the PWD stage of individual pine tree infection.REPs had the highest accuracy(OA:80.33%,Kappa:0.58)in distinguishing trees at the early stage of PWD from healthy trees.UAV-based HI data yielded similar results:the model combined VIs,REPs and MIs(OA:74.38%,Kappa:0.66)exhibited the highest accuracy in estimating the PWD stage of sampled trees,and REPs performed best in distinguishing healthy trees from trees at early stage of PWD(OA:71.67%,Kappa:0.40).Conclusion:Overall,our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage,although its accuracy must be improved before widespread use is practical.We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data.We believe that these results can be used to improve preventative measures in the control of PWD.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3901403 and 2023YFC3007203).
文摘The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass.
基金This research was supported by the Ningxia Hui Autonomous Region Key Research and Development Plan(2022BEG03052).
文摘The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.
基金supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.Program(PHD/0225/2561)the Faculty of Engineering,Kamphaeng Saen Campus,Kasetsart University,Thailand。
文摘The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method.
基金Yulin Science and Technology Bureau production Project“Research on Smart Agricultural Product Traceability System”(No.CXY-2022-64)Light of West China(No.XAB2022YN10)+1 种基金The China Postdoctoral Science Foundation(No.2023M740760)Shaanxi Province Key Research and Development Plan(No.2024SF-YBXM-678).
文摘Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81.
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
基金Supported by the National Natural Science Foundation of China(Nos.42206177,U1906217)the Shandong Provincial Natural Science Foundation(No.ZR2022QD075)the Fundamental Research Funds for the Central Universities(No.21CX06057A)。
文摘The accurate identification of marine oil spills and their emulsions is of great significance for emergency response to oil spill pollution.The selection of characteristic bands with strong separability helps to realize the rapid calculation of data on aircraft or in orbit,which will improve the timeliness of oil spill emergency monitoring.At the same time,the combination of spectral and spatial features can improve the accuracy of oil spill monitoring.Two ground-based experiments were designed to collect measured airborne hyperspectral data of crude oil and its emulsions,for which the multiscale superpixel level group clustering framework(MSGCF)was used to select spectral feature bands with strong separability.In addition,the double-branch dual-attention(DBDA)model was applied to identify crude oil and its emulsions.Compared with the recognition results based on original hyperspectral images,using the feature bands determined by MSGCF improved the recognition accuracy,and greatly shortened the running time.Moreover,the characteristic bands for quantifying the volume concentration of water-in-oil emulsions were determined,and a quantitative inversion model was constructed and applied to the AVIRIS image of the deepwater horizon oil spill event in 2010.This study verified the effectiveness of feature bands in identifying oil spill pollution types and quantifying concentration,laying foundation for rapid identification and quantification of marine oil spills and their emulsions on aircraft or in orbit.
基金Ministry of Education,Culture,Sports,Science and Technology,Grant/Award Number:20K11867。
文摘By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.
基金supported by Key Research and Development Plan of Ministry of Science and Technology(No.2023YFF0906200)Shaanxi Key Research and Development Plan(No.2018ZDXM-SF-093)+3 种基金Shaanxi Province Key Industrial Innovation Chain(Nos.S2022-YF-ZDCXL-ZDLGY-0093 and 2023-ZDLGY-45)Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760)Shaanxi Key Research and Development Plan(No.2024SF-YBXM-678).
文摘Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金the National Natural Science Foun-dation of China(Nos.61471263,61872267 and U21B2024)the Natural Science Foundation of Tianjin,China(No.16JCZDJC31100)Tianjin University Innovation Foundation(No.2021XZC0024).
文摘Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction.
基金National Natural Science Foundation of China(No.62201457)Natural Science Foundation of Shaanxi Province(Nos.2022JQ-668,2022JQ-588)。
文摘Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images.
基金supported by the National Natural Science Foundation of China(No.61275010)the Ph.D.Programs Foundation of Ministry of Education of China(No.20132304110007)+1 种基金the Heilongjiang Natural Science Foundation(No.F201409)the Fundamental Research Funds for the Central Universities(No.HEUCFD1410)
文摘To minimize the low classification accuracy and low utilization of spatial information in traditional hyperspectral image classification methods, we propose a new hyperspectral image classification method, which is based on the Gabor spatial texture features and nonparametric weighted spectral features, and the sparse representation classification method(Gabor–NWSF and SRC), abbreviated GNWSF–SRC. The proposed(GNWSF–SRC) method first combines the Gabor spatial features and nonparametric weighted spectral features to describe the hyperspectral image, and then applies the sparse representation method. Finally, the classification is obtained by analyzing the reconstruction error. We use the proposed method to process two typical hyperspectral data sets with different percentages of training samples. Theoretical analysis and simulation demonstrate that the proposed method improves the classification accuracy and Kappa coefficient compared with traditional classification methods and achieves better classification performance.
文摘To extract vegetation pigment concentration and physiological status has been studied in two test areas covered with swamp and flourish vegetation using pushbroom hyperspectral imager (PHI) data which flied in September of 2000 at Daxing'anling district of Heilongjiang Province, China. The ratio analysis of reflectance spectra (RARS) indices, which were put forward by Chappelle et al (1992), are chosen in this paper owing to their effect and simpleness against both comparison with various methods and techniques for exploration of pigment concentration and characteristics of PHI data. The correlation coefficients between RARS indices and pigment concentration of vegetation were up to 0.8. The new RARS indices modes are established in the two test areas using both PHI data and spectra of different vegetations measured in the field. The indices' parameter images of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Cars) of the test areas covered with swamp and flourish vegetation are acquired by the new RARS indices modes. Furthermore, the regional concentration of Chl a and Chl b are extracted and quantified using regression equations between RARS indices and pigment concentrations, which were built by Blackburn (1998). The results showed the physiological status and variety clearly, and are in good agreement with the distribution of vegetation in the field.
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period (No.2006BAB15B01)
文摘The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.
文摘Potentially harmful cyanobacterial blooms are an emerging environmental concern in freshwater bodies worldwide. Cyanobacterial blooms are generally caused by high nutrient inputs and warm, still waters and have been appearing with increasing frequency in water bodies used for drinking water supply and recreation, a problem which will likely worsen with a warming climate. Cyanobacterial blooms are composed of genera with known biological pigments and can be distinguished and analyzed via hyperspectral image collection technology such as remote sensing by satellites, airplanes, and drones. Here, we utilize hyperspectral microscopy and imaging spectroscopy to charac</span><u><span style="font-family:Verdana;">t</span></u><span style="font-family:Verdana;">erize and differentiate several important bloom-forming cyanobacteria genera obtained in the field during active research programs conducted by US Geological Survey and from commercial sources. Many of the cyanobacteria genera showed differences in their spectra that may be used to identify and predict their occurrence, including peaks and valleys in spectral reflectance. </span><span><span style="font-family:Verdana;">Because certain cyanobacteria, such as </span><i><span style="font-family:Verdana;">Cylindrospermum</span></i><span style="font-family:Verdana;"> or </span><i><span style="font-family:Verdana;">Dolichospe</span></i></span><i><span style="font-family:Verdana;">rmum</span></i><span style="font-family:Verdana;">, are more prone to produce cyanotoxins than others, the ability to different</span><span style="font-family:Verdana;">iate these species may help target high priority waterbodies for sampl</span><span style="font-family:Verdana;">ing. These spectra may also be used to prioritize restoration and research efforts </span><span style="font-family:Verdana;">to control cyanobacterial harmful algal blooms (CyanoHABs) and improv</span><span style="font-family:Verdana;">e water quality for aquatic life and humans alike.
文摘Hyperspectral unmixing is a powerful tool for the remote sensing image mining. Nonnegative matrix factorization (NMF) has been adopted to deal with this issue, while the precision of unmixing is closely related with the local minimizers of NMF. We present two novel initialization strategies that is based on CUR decomposition, which is physically meaningful. In the experimental test, NMF with the new initialization method is used to unmix the urban scene which was captured by airborne visible/infrared imaging spectrometer (AVIRIS) in 1997, numerical results show that the initialization methods work well.
基金supported by the Natural Science Foundation of Beijing Academy of Agriculture and Forestry Sciences(BAAFS),China(QNJJ201834)the National Natural Science Foundation of China(41471285 and 41671411)the National Key R&D Program of China(2017YFD0201501)
文摘The use of remote sensing to monitor nitrogen(N) in crops is important for obtaining both economic benefit and ecological value because it helps to improve the efficiency of fertilization and reduces the ecological and environmental burden.In this study,we model the total leaf N concentration(TLNC) in winter wheat constructed from hyperspectral data by considering the vertical N distribution(VND).The field hyperspectral data of winter wheat acquired during the 2013–2014 growing season were used to construct and validate the model.The results show that:(1) the vertical distribution law of LNC was distinct,presenting a quadratic polynomial tendency from the top layer to the bottom layer.(2) The effective layer for remote sensing detection varied at different growth stages.The entire canopy,the three upper layers,the three upper layers,and the top layer are the effective layers at the jointing stage,flag leaf stage,flowering stages,and filling stage,respectively.(3) The TLNC model considering the VND has high predicting accuracy and stability.For models based on the greenness index(GI),mND705(modified normalized difference 705),and normalized difference vegetation index(NDVI),the values for the determining coefficient(R2),and normalized root mean square error(nRMSE) are 0.61 and 8.84%,0.59 and 8.89%,and 0.53 and 9.37%,respectively.Therefore,the LNC model with VND provides an accurate and non-destructive method to monitor N levels in the field.
基金Project supported by the National Natural Foundation of China(No.40001008),by the German Federal Ministry of Education and Research (BMBF)(No.AZ39742),and by the Science and Technology Department of Zhejiang Province(No.001110445).
文摘45 and 50 composite soil samples were collected, respectively, from twoagricultural fields, that were enclosed and reclaimed from coastal tidal-flat areas in 1996 and 1984respectively, in Shangyu of Zhejiang Province, China, to investigate the physico-chemicalproperties and the hyperspectral characteristics of the saline soils and to make an assessment ontheir relationships. The reflectance spectra of saline soils were measured using a spectroradiometerin laboratory. The mean spectral curves of the saline soils from the two sites different inreclamation year showed that the saline soil taken from the recently reclaimed land with highersalinity demonstrated a lower reflectance intensity in the spectral region from about 550 nm to 2300nm. In addition, nine absorption bands, i.e., 488 nm, 530 nm, 670 nm, 880 nm, 940 nm, 1400 nm, 1900nm, 2 200 nm and 2 300 nm, were chosen as the spectral bands to investigate the relationshipsbetween soil physico-chemical properties by means of Pearson correlation analysis. Finally, thefirst two principal components were calculated from nine absorption bands and used to discriminatethe saline soil samples taken from two sampled fields. The results indicate that it is feasible todetect physico-chemical properties of saline soils from fields reclaimed for varying time periods onthe basis of the hyperspectral data.
基金funded by the National Key Research&Development Program of China(2018YFD0600200)Beijing’s Science and Technology Planning Project(Z191100008519004)Major emergency science and technology projects of National Forestry and Grassland Administration(ZD202001–05).
文摘Background:Pine wilt disease(PWD)is a major ecological concern in China that has caused severe damage to millions of Chinese pines(Pinus tabulaeformis).To control the spread of PWD,it is necessary to develop an effective approach to detect its presence in the early stage of infection.One potential solution is the use of Unmanned Airborne Vehicle(UAV)based hyperspectral images(HIs).UAV-based HIs have high spatial and spectral resolution and can gather data rapidly,potentially enabling the effective monitoring of large forests.Despite this,few studies examine the feasibility of HI data use in assessing the stage and severity of PWD infection in Chinese pine.Method:To fill this gap,we used a Random Forest(RF)algorithm to estimate the stage of PWD infection of trees sampled using UAV-based HI data and ground-based data(data directly collected from trees in the field).We compared relative accuracy of each of these data collection methods.We built our RF model using vegetation indices(VIs),red edge parameters(REPs),moisture indices(MIs),and their combination.Results:We report several key results.For ground data,the model that combined all parameters(OA:80.17%,Kappa:0.73)performed better than VIs(OA:75.21%,Kappa:0.66),REPs(OA:79.34%,Kappa:0.67),and MIs(OA:74.38%,Kappa:0.65)in predicting the PWD stage of individual pine tree infection.REPs had the highest accuracy(OA:80.33%,Kappa:0.58)in distinguishing trees at the early stage of PWD from healthy trees.UAV-based HI data yielded similar results:the model combined VIs,REPs and MIs(OA:74.38%,Kappa:0.66)exhibited the highest accuracy in estimating the PWD stage of sampled trees,and REPs performed best in distinguishing healthy trees from trees at early stage of PWD(OA:71.67%,Kappa:0.40).Conclusion:Overall,our results confirm the validity of using HI data to identify pine trees infected with PWD in its early stage,although its accuracy must be improved before widespread use is practical.We also show UAV-based data PWD classifications are less accurate but comparable to those of ground-based data.We believe that these results can be used to improve preventative measures in the control of PWD.