Based on some recent results for interlacing eigenvalue intervals from 1-parameter families of se- quences of eigenvalue inequalities, a new method is given to solving the index problem for Sturm-Liouville eigenvalues...Based on some recent results for interlacing eigenvalue intervals from 1-parameter families of se- quences of eigenvalue inequalities, a new method is given to solving the index problem for Sturm-Liouville eigenvalues for coupled self-adjoint boundary conditions in the regular case. The key is a new characteristic principle for indices for Sturm-Liouville eigenvalues. The algorithm corresponding on the characteristic princi- ple are discussed, and numerical examples are presented to illustrate the theoretical results and show that the algorithm is valid.展开更多
基金Supported by the National Natural Science Foundation of China(No.11361039 and 11161030)the Natural Science Foundation of Inner Mongolia Province,China(No.2013MS0116)
文摘Based on some recent results for interlacing eigenvalue intervals from 1-parameter families of se- quences of eigenvalue inequalities, a new method is given to solving the index problem for Sturm-Liouville eigenvalues for coupled self-adjoint boundary conditions in the regular case. The key is a new characteristic principle for indices for Sturm-Liouville eigenvalues. The algorithm corresponding on the characteristic princi- ple are discussed, and numerical examples are presented to illustrate the theoretical results and show that the algorithm is valid.