The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-ty...The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.展开更多
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for...In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.展开更多
A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken ba...A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.展开更多
Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused b...Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused by the rotor slot permeance harmonics.By analyzing the research status of electromagnetic vibration of the WSIM and the composition of the air-gap magnetic field of the motor,the idea that the auxiliary slots mainly affect the air-gap field harmonics by changing the air-gap permeance of the motor is put forward.The mathematical model of air-gap permeance of WSIM is established to simulate the influence of auxiliary slots on the air-gap permeance.Through the parametric analysis of the mathematical model,the change of auxiliary slot size is simulated.The air-gap permeance waveform is decomposed by the two-dimensional Fourier transform,and then the variation of the air-gap permeance harmonics with the size of the auxiliary slot is analyzed.Finally,the finite element simulation model of the WSIM with the auxiliary slots is established,and the waveform of the air-gap flux density of the motor is analyzed to verify the effectiveness of the mathematical model.Meanwhile,the results show that after opening the auxiliary slot,the radial electromagnetic force of the motor was reduced by 28.4%.展开更多
The geometrical feature of the skewed rotor slots in induction motors makes the 2 dimensional (2 D) finite element method (FEM) not directly applicable. Based on the multi slice model in this paper, a time stepping...The geometrical feature of the skewed rotor slots in induction motors makes the 2 dimensional (2 D) finite element method (FEM) not directly applicable. Based on the multi slice model in this paper, a time stepping 2 D eddy current FEM is described to study the steady state operation and the starting process of induction machines with skewed rotor slots. The fields of the multi slices are solved in parallel, and thus the effects of skewed slots and eddy current can be taken into account directly. The basic formulas for the multi slice model are derived. Special technique to reduce computation time in solving the coupled system equations is also described. The results obtained by using the program developed have very good correlation with the test data.展开更多
The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constrai...The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.展开更多
Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its ea...Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is pro- posed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are syn- thesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air- gap eccentricity diagnosis. The effectiveness of the pro- posed harmonic synthesis technique is examined experi- mentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.展开更多
The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation forc...The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.展开更多
This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an...This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.展开更多
Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation paramet...Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.展开更多
Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional...Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional FCS-MPTC speed controller design,a classical proportional integral(PI)controller is typically chosen to generate the torque reference.However,the PI controller is dependent on system parameters and sensitive to the load torque variation,which seriously affects control performance.In this paper,a model predictive torque control using sliding mode control(MPTC+SMC)for IM is proposed to enhance the robust performance of the drive system.First,the influence of the parameter mismatches for FCS-MPTC is analyzed.Second,the shortcomings of traditional PI controller are derived.Then,the proposed MPTC+SMC method is designed,and the MPTC+PI and MPTC+SMC are compared theoretically.Finally,experimental results demonstrate the correctness and effectiveness of the proposed MPTC+SMC.In comparison with MPTC+PI,MPTC+SMC has the better dynamic performance and stronger robust performance against parameter variations and load disturbance.展开更多
For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constr...For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constraints. To solve the problem, the authors introduce a united random algorithm. At first, the problem is divided into two parts, the optimal rotor slots and the optimization of other dimensions. Before optimizing the rotor slots with genetic algorithm ( GA), the second part is solved with TABU algorithm to simplify the problem. The numerical results showed that this method is better than the method using a traditional algorithm.展开更多
Rotor speed estimation for induction motors is a key problem in speed-sensorless motor drives. This paper performs nonlinear high gain observer design based on the full-order model of the induction motor. Such an effo...Rotor speed estimation for induction motors is a key problem in speed-sensorless motor drives. This paper performs nonlinear high gain observer design based on the full-order model of the induction motor. Such an effort appears nontrivial due to the fact that the full-model at best admits locally a non-triangular observable form(NTOF), and its analytical representation in the NTOF can not be obtained. This paper proposes an approximate high gain estimation algorithm, which enjoys a constructive design, ease of tuning, and improved speed estimation and tracking performance. Experiments demonstrate the effectiveness of the proposed algorithm.展开更多
The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and...The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.展开更多
The year 2012 marked the 10th anniversary of publication of Presidential Decree No. 4508/2002, which set forth minimum efficiency standards for induction motors in Brazil. Within this context, the present article focu...The year 2012 marked the 10th anniversary of publication of Presidential Decree No. 4508/2002, which set forth minimum efficiency standards for induction motors in Brazil. Within this context, the present article focuses on the importance of implementing minimum efficiency standards in Brazil and elsewhere and presents the state of the art in domestic and international legislation and standards pertaining to induction motors. It also covers advancements in motor technology, by means of an analysis of motors currently on the market, and trends in said technology, with particular emphasis on the search for new materials for permanent magnet manufacturing. The results of experimental testing of a permanent-magnet motor and a premium-efficiency induction motor are presented and discussed, with the objective of contributing to definition of the IE4 (Efficiency Level from International Electrotechnical Commission) standard and to the goal-oriented Brazilian efficiency program. The present article described the results of experimental testing with an induction motor and a line-start permanent-magnet motor and concluded that permanent-magnet motors are superior in performance to induction motors at loads between half and full, with an efficiency advantage of up to 6.7%. However, in applications with wide variations in load, with motor operation below half load, use of permanent-magnet motors is not economically feasible, as the current cost of these motors exceeds that of induction motors. Another relevant finding concerns the current harmonic distortion observed during testing. The tested permanent-magnet motor exhibited a distortion of up to 13.5%, exceeding Institute of Electrical and Electronics Engineers Standard 519/1992 recommended limits. This behavior must be clearly specified and taken into account by future standards that define the super premium class, lest the impact of harmonic distortion prove to be detrimental to industries that adopt these motors for their processes.展开更多
Induction motors, as typical electromechanical energy conversion devices, have received limited attention in previous studies on electromechanical coupling vibrations, precise modeling, and the use of electromechanica...Induction motors, as typical electromechanical energy conversion devices, have received limited attention in previous studies on electromechanical coupling vibrations, precise modeling, and the use of electromechanical coupling effects for fault diagnosis and condition assessment in motor drive systems. This study proposes a comprehensive model of cage induction motors that integrates the multiple coupled circuit model with a rotor-bearing dynamics model. The model accounts for the linear increase in the magnetomotive force across the slot and incorporates the skidding characteristics of bearings in the rotor-bearing system. By calculating the time-varying mutual inductance parameters based on the air-gap distribution in the vibration environment, the electromechanical coupling vibration of the cage motor is investigated. Furthermore, this study examines the electromechanical coupling vibration characteristics influenced by various factors, including bearing clearances, radial loads, and the vertical excitation frequencies of the stators. The results show that the proposed model improves the excitation inputs for the electrical and mechanical systems of the motor compared with conventional models. Increased bearing clearance and radial load affect the current and torque similarly but have opposite effects on the slip ratio. This study provides a deeper understanding of electromechanical coupling mechanisms and facilitates the use of such phenomena for fault diagnosis and condition assessment in motor-driven systems.展开更多
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
This paper deals with the design of an output feedback predictive controller for induction motors. The fundamental interest of the proposed controller is the capability of decoupling the mechanical speed and the rotor...This paper deals with the design of an output feedback predictive controller for induction motors. The fundamental interest of the proposed controller is the capability of decoupling the mechanical speed and the rotor fluxes, without degradation against the variation of rotor resistance and load torque. Hence, the contribution is to apply two estimation procedures in order to achieve this goal. Namely, an unknown input observer (UIO) is used for the constant time estimation whereas a heuristic solution is exploited for the load torque update. Moreover, rotor flux components are recovered as an unavailable state of the system. Effectiveness of the proposed observers and the performance of the controller are confirmed by simulation results.展开更多
基金supported in part by Explosion Prevention Technology and Rotating Machines(EPT&RM)laboratory,South African Bureau of Standards(SABS),Pretoria,South Africa.
文摘The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
基金Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.
基金Project (No. 50677060) supported by the National Natural ScienceFoundation of China
文摘A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.
基金supported by the National Natural Science Funds of China No.51977055Major Science and Technology program of Anhui province No.201903a05020042Anhui Province key laboratory of Large-scale Submersible Electric Pump and Accoutrements。
文摘Aiming at the problem of electromagnetic vibration of the water-filled submersible induction motor(WSIM),a method of opening auxiliary slots on the rotor side is proposed to weaken the air-gap field harmonics caused by the rotor slot permeance harmonics.By analyzing the research status of electromagnetic vibration of the WSIM and the composition of the air-gap magnetic field of the motor,the idea that the auxiliary slots mainly affect the air-gap field harmonics by changing the air-gap permeance of the motor is put forward.The mathematical model of air-gap permeance of WSIM is established to simulate the influence of auxiliary slots on the air-gap permeance.Through the parametric analysis of the mathematical model,the change of auxiliary slot size is simulated.The air-gap permeance waveform is decomposed by the two-dimensional Fourier transform,and then the variation of the air-gap permeance harmonics with the size of the auxiliary slot is analyzed.Finally,the finite element simulation model of the WSIM with the auxiliary slots is established,and the waveform of the air-gap flux density of the motor is analyzed to verify the effectiveness of the mathematical model.Meanwhile,the results show that after opening the auxiliary slot,the radial electromagnetic force of the motor was reduced by 28.4%.
文摘The geometrical feature of the skewed rotor slots in induction motors makes the 2 dimensional (2 D) finite element method (FEM) not directly applicable. Based on the multi slice model in this paper, a time stepping 2 D eddy current FEM is described to study the steady state operation and the starting process of induction machines with skewed rotor slots. The fields of the multi slices are solved in parallel, and thus the effects of skewed slots and eddy current can be taken into account directly. The basic formulas for the multi slice model are derived. Special technique to reduce computation time in solving the coupled system equations is also described. The results obtained by using the program developed have very good correlation with the test data.
文摘The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.
基金Supported in part by Natural Sciences and Engineering Research Council of Canada(NSERC)eMech Systems IncBare Point Water Treatment Plant in Thunder Bay,Ontario,Canada
文摘Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is pro- posed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are syn- thesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air- gap eccentricity diagnosis. The effectiveness of the pro- posed harmonic synthesis technique is examined experi- mentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
文摘The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.
文摘This paper presents a powerful application of genetic algorithm (GA) for the minimization of the total harmonic current distortion (THCD) in high-power induction motors fed by voltage source inverters, based on an approximate harmonic model. That is, having defined a desired fundamental output voltage, optimal pulse patterns (switching angles) are determined to produce the fundamental output voltage while minimizing the THCD. The complete results for the two cases of three and five switching instants in the first quarter period of pulse width modulation (PWM) waveform are presented. Presence of harmonics in the stator excitation leads to a pulsing-torque component. Considering the fact that if the pulsing-torques are at low frequencies, they can cause troublesome speed fluctuations, shaft fatigue, and unsatisfactory performance in the feedback control system, the 5th, 7th, 1 lth, and 13th current harmonics (in the case of five switching angles) are constrained at some pre-specified values, to mitigate the detrimental effects of low-frequency harmonics. At the same time, the THCD is optimized while the required fundamental output voltage is maintained.
基金This work was supported by the National Natural Science Foundation of China (No,50177009) and Guangdong Natural Science Foundation (No.011652) .
文摘Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
基金supported in part by the National Natural Science Funds of China under Grants 5217071282 and 5210071275in part by China Postdoctoral Science Foundation under Grant 2020M683524+7 种基金in part by Nature Science Basic Research Plan in Shaanxi Province under Grant 2020JQ-631 and 2021JQ-477in part by State Key Laboratory of Electrical Insulation and Power Equipment under Grant EIPE20201in part by State Key Laboratory of Large Electric Drive System and Equipment Technology under Grant SKLLDJ012016006in part by Key Research and Development Project of ShaanXi Province under Grant 2019GY-060in part by Key Laboratory of Industrial Automation in ShaanXi Province under Grant SLGPT2019KF01-12in part by the Key R&D plan of Shaanxi Province under Grant 2021GY-282in part by Shaanxi Outstanding Youth Fund under Grant 2020JC-40in part by Key Laboratory of Power Electronic Devices and High Efficiency Power Conversion in Xi’an under Grant 2019219814SYS013CG035。
文摘Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional FCS-MPTC speed controller design,a classical proportional integral(PI)controller is typically chosen to generate the torque reference.However,the PI controller is dependent on system parameters and sensitive to the load torque variation,which seriously affects control performance.In this paper,a model predictive torque control using sliding mode control(MPTC+SMC)for IM is proposed to enhance the robust performance of the drive system.First,the influence of the parameter mismatches for FCS-MPTC is analyzed.Second,the shortcomings of traditional PI controller are derived.Then,the proposed MPTC+SMC method is designed,and the MPTC+PI and MPTC+SMC are compared theoretically.Finally,experimental results demonstrate the correctness and effectiveness of the proposed MPTC+SMC.In comparison with MPTC+PI,MPTC+SMC has the better dynamic performance and stronger robust performance against parameter variations and load disturbance.
文摘For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constraints. To solve the problem, the authors introduce a united random algorithm. At first, the problem is divided into two parts, the optimal rotor slots and the optimization of other dimensions. Before optimizing the rotor slots with genetic algorithm ( GA), the second part is solved with TABU algorithm to simplify the problem. The numerical results showed that this method is better than the method using a traditional algorithm.
文摘Rotor speed estimation for induction motors is a key problem in speed-sensorless motor drives. This paper performs nonlinear high gain observer design based on the full-order model of the induction motor. Such an effort appears nontrivial due to the fact that the full-model at best admits locally a non-triangular observable form(NTOF), and its analytical representation in the NTOF can not be obtained. This paper proposes an approximate high gain estimation algorithm, which enjoys a constructive design, ease of tuning, and improved speed estimation and tracking performance. Experiments demonstrate the effectiveness of the proposed algorithm.
文摘The mathematical model of the modem induction traction motor (TRIM and cutting magnetic circuit traction motor), supplied with IPM inverter with different control technique is presented in the paper. In electric and hybrid vehicle are applied: FLMC (Fuzzy Logic Mode Control), SLMC (Sliding Mode Control), NRMC (Neural Regulator Control), and Direct Power and Torque Control for Space Vector Modulated inverter (DPTC SVM). In the special solution of the electric and hybrid vehicle are also applied a Random Switching Frequency Modulation. The control of hybrid vehicle should assure the realization of established transport-assignments in the definite time, at the optimum of energy consumption. One can this realize using. The multi criteria control system. Some results of the computer simulations are presented in the paper. Results of numerical calculation were verified for laboratory model of the electric and hybrid wheel vehicles traction motor.
文摘The year 2012 marked the 10th anniversary of publication of Presidential Decree No. 4508/2002, which set forth minimum efficiency standards for induction motors in Brazil. Within this context, the present article focuses on the importance of implementing minimum efficiency standards in Brazil and elsewhere and presents the state of the art in domestic and international legislation and standards pertaining to induction motors. It also covers advancements in motor technology, by means of an analysis of motors currently on the market, and trends in said technology, with particular emphasis on the search for new materials for permanent magnet manufacturing. The results of experimental testing of a permanent-magnet motor and a premium-efficiency induction motor are presented and discussed, with the objective of contributing to definition of the IE4 (Efficiency Level from International Electrotechnical Commission) standard and to the goal-oriented Brazilian efficiency program. The present article described the results of experimental testing with an induction motor and a line-start permanent-magnet motor and concluded that permanent-magnet motors are superior in performance to induction motors at loads between half and full, with an efficiency advantage of up to 6.7%. However, in applications with wide variations in load, with motor operation below half load, use of permanent-magnet motors is not economically feasible, as the current cost of these motors exceeds that of induction motors. Another relevant finding concerns the current harmonic distortion observed during testing. The tested permanent-magnet motor exhibited a distortion of up to 13.5%, exceeding Institute of Electrical and Electronics Engineers Standard 519/1992 recommended limits. This behavior must be clearly specified and taken into account by future standards that define the super premium class, lest the impact of harmonic distortion prove to be detrimental to industries that adopt these motors for their processes.
基金supported by the National Natural Science Foundation of China(Grant Nos. 52022083, 52275132)。
文摘Induction motors, as typical electromechanical energy conversion devices, have received limited attention in previous studies on electromechanical coupling vibrations, precise modeling, and the use of electromechanical coupling effects for fault diagnosis and condition assessment in motor drive systems. This study proposes a comprehensive model of cage induction motors that integrates the multiple coupled circuit model with a rotor-bearing dynamics model. The model accounts for the linear increase in the magnetomotive force across the slot and incorporates the skidding characteristics of bearings in the rotor-bearing system. By calculating the time-varying mutual inductance parameters based on the air-gap distribution in the vibration environment, the electromechanical coupling vibration of the cage motor is investigated. Furthermore, this study examines the electromechanical coupling vibration characteristics influenced by various factors, including bearing clearances, radial loads, and the vertical excitation frequencies of the stators. The results show that the proposed model improves the excitation inputs for the electrical and mechanical systems of the motor compared with conventional models. Increased bearing clearance and radial load affect the current and torque similarly but have opposite effects on the slip ratio. This study provides a deeper understanding of electromechanical coupling mechanisms and facilitates the use of such phenomena for fault diagnosis and condition assessment in motor-driven systems.
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
基金supported by the National Engineering School of Monastir, Tunisia
文摘This paper deals with the design of an output feedback predictive controller for induction motors. The fundamental interest of the proposed controller is the capability of decoupling the mechanical speed and the rotor fluxes, without degradation against the variation of rotor resistance and load torque. Hence, the contribution is to apply two estimation procedures in order to achieve this goal. Namely, an unknown input observer (UIO) is used for the constant time estimation whereas a heuristic solution is exploited for the load torque update. Moreover, rotor flux components are recovered as an unavailable state of the system. Effectiveness of the proposed observers and the performance of the controller are confirmed by simulation results.