期刊文献+
共找到1,144篇文章
< 1 2 58 >
每页显示 20 50 100
Research Progress on the Preparation of Inorganic/Natural Materials Composite Microspheres
1
作者 Jing Cao Chaojie Feng Wen Duan 《Expert Review of Chinese Chemical》 2024年第1期15-20,共6页
Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them su... Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres. 展开更多
关键词 natural polymer materials composite microspheres PREPARATION research progress
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:12
2
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 polymer inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
3
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Chemicals Used in Polymeric Material Coated Waste Paper Composites
4
作者 Zübeyde Bülbül Birol Üner 《Journal of Materials Science and Chemical Engineering》 2023年第5期1-10,共10页
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ... In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers. 展开更多
关键词 Matching Chemicals Paper composites Filling materials polymerS Coupling Agents Paper Fibers
下载PDF
A review on machinability of carbon fiber reinforced polymer(CFRP)and glass fiber reinforced polymer(GFRP)composite materials 被引量:41
5
作者 Meltem Altin Karatas Hasan Gokkaya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期318-326,共9页
Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in s... Fiber reinforced polymer(FRP) composite materials are heterogeneous and anisotropic materials that do not exhibit plastic deformation. They have been used in a wide range of contemporary applications particularly in space and aviation,automotive,maritime and manufacturing of sports equipment. Carbon fiber reinforced polymer(CFRP) and glass fiber reinforced polymer(GFRP) composite materials,among other fiber reinforced materials,have been increasingly replacing conventional materials with their excellent strength and low specific weight properties. Their manufacturability in varying combinations with customized strength properties,also their high fatigue,toughness and high temperature wear and oxidation resistance capabilities render these materials an excellent choice in engineering applications.In the present review study,a literature survey was conducted on the machinability properties and related approaches for CFRP and GFRP composite materials. As in the machining of all anisotropic and heterogeneous materials,failure mechanisms were also reported in the machining of CFRP and GFRP materials with both conventional and modern manufacturing methods and the results of these studies were obtained by use of variance analysis(ANOVA),artificial neural networks(ANN) model,fuzzy inference system(FIS),harmony search(HS) algorithm,genetic algorithm(GA),Taguchi's optimization technique,multi-criteria optimization,analytical modeling,stress analysis,finite elements method(FEM),data analysis,and linear regression technique. Failure mechanisms and surface quality is discussed with the help of optical and scanning electron microscopy,and profilometry. ANOVA,GA,FEM,etc. are used to analyze and generate predictive models. 展开更多
关键词 composite materials Fiber reinforced polymer composite materials CFRP GFRP Machining Wear Surface damage
下载PDF
Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte 被引量:5
6
作者 Su Wang Qifang Sun +7 位作者 Wenxiu Peng Yue Ma Ying Zhou Dawei Song Hongzhou Zhang Xixi Shi Chunliang Li Lianqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期85-93,共9页
Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,h... Lithium metal is one of the most promising anodes for next-generation batteries due to its high capacity and low reduction potential.However,the notorious Li dendrites can cause the short life span and safety issues,hindering the extensive application of lithium batteries.Herein,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)ceramics are integrated into polyethylene oxide(PEO)to construct a facile polymer/inorganic composite solid-state electrolyte(CSSE)to inhibit the growth of Li dendrites and widen the electrochemical stability window.Given the feasibility of our strategy,the designed PEO-LLZO-LiTFSI composite solid-state electrolyte(PLLCSSE)exhibits an outstanding cycling property of 134.2 mAh g^(-1) after 500 cycles and the Coulombic efficiency of 99.1%after 1000 cycles at 1 C in LiFePO_(4)-Li cell.When cooperated with LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode,the PLL-CSSE renders a capacity retention of 82.4%after 200 cycles at 0.2 C.More importantly,the uniform dispersion of LLZO in PEO matrix is tentative tested via Raman and FT-IR spectra and should be responsible for the improved electrochemical performance.The same conclusion can be drawn from the interface investigation after cycling.This work presents an intriguing solid-state electrolyte with high electrochemical performance,which will boost the development of all-solid-state lithium batteries with high energy density. 展开更多
关键词 All-solid-state lithium battery polymer/inorganic composite electrolyte Uniformly dispersion Interface compatibility
下载PDF
The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+transportation 被引量:7
7
作者 Zhichuan Shen Yifeng Cheng +3 位作者 Shuhui Sun Xi Ke Liying Liu Zhicong Shi 《Carbon Energy》 CAS 2021年第3期482-508,共27页
Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cyc... Compared with commercial lithium batteries with liquid electrolytes,all-solidstate lithium batteries(ASSLBs)possess the advantages of higher safety,better electrochemical stability,higher energy density,and longer cycle life;therefore,ASSLBs have been identified as promising candidates for next-generation safe and stable high-energy-storage devices.The design and fabrication of solid-state electrolytes(SSEs)are vital for the future commercialization of ASSLBs.Among various SSEs,solid polymer composite electrolytes(SPCEs)consisting of inorganic nanofillers and polymer matrix have shown great application prospects in the practice of ASSLBs.The incorporation of inorganic nanofillers into the polymer matrix has been considered as a crucial method to achieve high ionic conductivity for SPCE.In this review,the mechanisms of Li+transport variation caused by incorporating inorganic nanofillers into the polymer matrix are discussed in detail.On the basis of the recent progress,the respective contributions of polymer chains,passive ceramic nanofillers,and active ceramic nanofillers in affecting the Li+transport process of SPCE are reviewed systematically.The inherent relationship between the morphological characteristics of inorganic nanofillers and the ionic conductivity of the resultant SPCE is discussed.Finally,the challenges and future perspectives for developing high-performance SPCE are put forward.This review aims to provide possible strategies for the further improvement of ionic conductivity in inorganic nanoscale filler-reinforced SPCE and highlight their inspiration for future research directions. 展开更多
关键词 all-solid-state lithium batteries inorganic nanofillers Li+transportation solid polymer composite electrolyte
下载PDF
SYNTHESIS AND BIOTECHNOLOGICAL APPLICATIONS OF VINYL POLYMERINORGANIC HYBRID AND MESOPOROUS MATERIALS 被引量:2
8
作者 Yen Wei Kun-yuan Qiu Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, USA Department of Polymer Science and Engineering, Peking University, Beijing 100871, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第1期1-7,共7页
We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials ca... We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials. 展开更多
关键词 vinyl polymer-inorganic hybrid materials mesoporous materials sol-gel process biotech-nological applications
下载PDF
The Packaging Materials with Carbon Nanotube/Polymer Composites
9
作者 Shen-Li-Fu Wern-Shirang Jou Huy-Zu Cheng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期1-2,共2页
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ... A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging. 展开更多
关键词 packaging materials carbon nano-tube polymer composites
下载PDF
A Comparative Investigation of the Biodegradation Behaviour of Linseed Oil-Based Cross-Linked Composites Filled with Industrial Waste Materials in Two Different Soils
10
作者 Eglė Malachovskienė Danguolė Bridžiuvienė +2 位作者 Jolita Ostrauskaitė Justina Vaičekauskaitė Gailė Žalūdienė 《Journal of Renewable Materials》 SCIE EI 2023年第3期1254-1268,共15页
The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied durin... The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films. 展开更多
关键词 polymer composites linseed oil industrial waste materials BIODEGRADATION soil burial
下载PDF
Flame Retardancy Enhancement of Hybrid Composite Material by Using Inorganic Retardants 被引量:1
11
作者 Mohammed Al-Maamori A Al-Mosawi Abbass Hashim 《Materials Sciences and Applications》 2011年第8期1134-1138,共5页
This study aims to investigate the possibility of improving the flame Retardancy for the hybrid composite material consisting araldite resin (CY223). The hybrid composite was reinforced by hybrid fibers from carbon an... This study aims to investigate the possibility of improving the flame Retardancy for the hybrid composite material consisting araldite resin (CY223). The hybrid composite was reinforced by hybrid fibers from carbon and Kevlar fibers on woven roving form (45o -0o), by using a surface layer of 4mm thick of Zinc Borate flame retardant. Afterward, the structure was exposed directly to gas flame of 2000oC due to 10 mm and 20mm exposure interval. The retardant layer thermal resistance and protection capability were determined. The study was continued to improve the performance of Zinc Borate layer mixed by 10%, 20% and 30% of Antimony Trioxide. To determine the heat transfer of the composite material the opposite surface temperature method was used. Zinc Borate with (30%) Antimony Trioxide gives the optimized result of the experiment. 展开更多
关键词 HYBRID composite materiAL FLAME Retardant materiAL inorganic Retardant
下载PDF
Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach
12
作者 M.Noryani S.M.Sapuan +2 位作者 M.T.Mastura M.Y.M.Zuhri E.S.Zainudin 《Journal of Renewable Materials》 SCIE 2019年第11期1165-1179,共15页
Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statist... Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statistical analysis alone makes it difficult to identify the ideal composition of the final composite.An integrated approach between statistical model and micromechanical model is desired.In this paper,resultant natural fibre and polymer matrix from previous study is used to estimate the mechanical properties such as density,Young’s modulus and tensile strength.Four levels of fibre loading are used to compare the optimum natural fibre reinforced polymer composite(NFRPC).The result from this analytical approach revealed that kenaf/polystyrene(PS)with 40%fibre loading is the ideal composite in automotive component application.It was found that the ideal composite score is 1.156 g/cm^(3),24.2 GPa and 413.4 MPa for density,Young’s modulus and tensile strength,respectively.A suggestion to increase the properties on Young’s modulus are also presented.This work proves that the statistical model is well incorporated with the analytical approach to choose the correct composite to use in automotive application. 展开更多
关键词 material selection natural fibre reinforced polymer composites rule of mixtures
下载PDF
Composite Materials Damage Modeling Based on Dielectric Properties 被引量:1
13
作者 Rassel Raihan Fazle Rabbi +1 位作者 Vamsee Vadlamudi Kenneth Reifsnider 《Materials Sciences and Applications》 2015年第11期1033-1053,共21页
Composite materials, by nature, are universally dielectric. The distribution of the phases, including voids and cracks, has a major influence on the dielectric properties of the composite materials. The dielectric rel... Composite materials, by nature, are universally dielectric. The distribution of the phases, including voids and cracks, has a major influence on the dielectric properties of the composite materials. The dielectric relaxation behavior measured by Broadband Dielectric Spectroscopy (BbDS) is often caused by interfacial polarization, which is known as Maxwell-Wagner-Sillars polarization that develops because of the heterogeneity of the composite materials. A prominent mechanism in the low frequency range is driven by charge accumulation at the interphases between different constituent phases. In our previous work, we observed in-situ changes in dielectric behavior during static tensile testing, and also studied the effects of applied mechanical and ambient environments on composite material damage states based on the evaluation of dielectric spectral analysis parameters. In the present work, a two dimensional conformal computational model was developed using a COMSOL&trade;multi-physics module to interpret the effective dielectric behavior of the resulting composite as a function of applied frequency spectra, especially the effects of volume fraction, the distribution of the defects inside of the material volume, and the influence of the permittivity and Ohmic conductivity of the host materials and defects. 展开更多
关键词 polymer Matrix composite materials DIELECTRIC Properties DEGRADATION of composite materials BROADBAND DIELECTRIC Spectroscopy (BbDS)
下载PDF
Design Details of Low-Energy and Passive Houses Using Composites from Waste Raw Materials
14
作者 Libor Matejka Jan Pencik 《Journal of Civil Engineering and Architecture》 2011年第5期440-453,共14页
The article deals with potential use of waste materials in construction industry, specifically use of high density polyethylene (HDPE). The article is focused in particular on recycled polyethylene application in pr... The article deals with potential use of waste materials in construction industry, specifically use of high density polyethylene (HDPE). The article is focused in particular on recycled polyethylene application in products designed for construction industry, especially for passive houses. Currently certain building details of passive houses are not perfect or their solution results in higher economic demands related to house purchase and its further use. For the purpose of this thesis details of windows installation in external walls and elimination of thermal bridges in wall footing have been chosen. Products were subject to mathematic modelling of thermal technique and statics. The executed mathematic models documented that products are fully functional and that the suggested product successfully eliminate insufficiencies of some currently applied solutions. 展开更多
关键词 Recycling of materials energy savings ECOLOGY WASTE polymer composite thermal bridges.
下载PDF
Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition
15
作者 Hongtao Ren Yachao Liu +1 位作者 Lei Zhang Kai Liu 《Journal of Semiconductors》 EI CAS CSCD 2019年第6期25-35,共11页
Two-dimensional(2D) materials have attracted considerable attention because of their novel and tunable electronic,optical, ferromagnetic, and chemical properties. Compared to mechanical exfoliation and chemical vapor ... Two-dimensional(2D) materials have attracted considerable attention because of their novel and tunable electronic,optical, ferromagnetic, and chemical properties. Compared to mechanical exfoliation and chemical vapor deposition, polymer-assisted deposition(PAD) is more suitable for mass production of 2D materials owing to its good reproducibility and reliability. In this review, we summarize the recent development of PAD on syntheses of 2D materials. First, we introduce principles and processing steps of PAD. Second, 2D materials, including graphene, MoS2, and MoS2/glassy-graphene heterostructures, are presented to illustrate the power of PAD and provide readers with the opportunity to assess the method. Last, we discuss the future prospects and challenges in this research field. This review provides a novel technique for preparing 2D layered materials and may inspire new applications of 2D layered materials. 展开更多
关键词 polymer-assisted deposition LAYERED composite materials glassy-graphene MOS2 HETEROSTRUCTURES
下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:2
16
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 inorganic solid electrolytes polymer solid electrolytes composite solid electrolytes Interface engineering
下载PDF
In-Situ Composition and Luminescence of Europium and Terbium Coordination Polymers/PEMA Hybrid Thick Films
17
作者 闫冰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期5-7,共3页
Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordi... Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridiae- 3-carboxylic acid, the transparent hybrid thick fihns composed of [ Eu( NIC )3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl mettuwrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation trod emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable sabstrate for the luminescence of terbium ions. In the range of camposing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol /15 mL EMA ), emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place. 展开更多
关键词 in-situ composition LUMINESCENCE hybrut thick films advanced composite materials europium and terbium coordination polymers poly ethylmethacrylate
下载PDF
Natural Composite Material from Steelwool or Luffa cylindrica under Natural, Rigid and Flexible Resin
18
作者 Ignacio Contreras-Andrade Daniela Rincon-Pardo +2 位作者 Carlos Alberto Guerrero-Fajardo Jonathan Parra-Santiago Eliana Guerrero-Romero 《Journal of Chemistry and Chemical Engineering》 2014年第9期906-917,共12页
In a changing world with a high interest in new ecomaterials, natural fibers such as the steelwool or Luffa cylindriea appear in new presentations and mixing with other materials to develop better opportunities to rep... In a changing world with a high interest in new ecomaterials, natural fibers such as the steelwool or Luffa cylindriea appear in new presentations and mixing with other materials to develop better opportunities to replace synthetic fibers. This work presents a research on the use of steelwool fiber for composite materials, on the basis of the physical properties, that generate conditions of mixing with three binders (matrix) natural: the rosin, artificial hard: polyurethane resin and artificial flexible: flexible twin resin (epoxy) and finally a polyester resin to make a comparison with other major resins. A testing of compression and tension is carried out to the materials analyzed, obtaining three types of composite materials by the above mentioned binders and three proposed presentations of fiber (complete, tissue and ground). The test tube in tension with polyester resin presented a high rigidity and a percentage of deformation of 14%, resulting in less distortion than the woven with resin polyurethane with 12% of deformation. The presentation with resin polyurethane presented greater resistance to compression, because the resin acts as a sponge absorbing the energy of charge and the join of particles is larger than the other presentations generating greater cohesion among them and avoiding its rupture easily for a load of 2,000 kg. The presentation that is least resisted was the woven in two resins in the stage of energy absorption of load where polyurethane is 800 kg and the flexible twin is 850 kg, because the form of woven fiber distribution creates spaces where there are more resin than fiber. 展开更多
关键词 Natural fibers steelwool industrial design binder matrix composite materials reinforced polymer.
下载PDF
Mechanical Behaviors of ZrO_2-Al_2O_3 Ceramic Composites with Y_2O_3 as Stabilizer 被引量:3
19
作者 丘泰 王玉春 沈春英 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期280-284,共5页
The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into t... The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains. 展开更多
关键词 inorganic non-metallic materials zirconia-alumina ceramic composites yttria stabilizer mechanical behaviors toughening mechanism rare earths
下载PDF
Synthesis of Electroconducting Hydroxy-Sodalite/Graphite Composite: Preparation and Characterization 被引量:2
20
作者 Rima Alomari Muayed Esaifan +3 位作者 Mohammed Khair Hourani Hiba Al Amayreh Mohammed Amayreh Hani Khoury 《Advances in Materials Physics and Chemistry》 2019年第3期25-36,共12页
Electroconductive hydroxy-sodalite/graphite composites were synthesized by alkali-activation of kaolinite in the presence of sodium hydroxide as the alkali activator and graphite as a conductive filler. Thermal, morph... Electroconductive hydroxy-sodalite/graphite composites were synthesized by alkali-activation of kaolinite in the presence of sodium hydroxide as the alkali activator and graphite as a conductive filler. Thermal, morphological and microstructural properties in addition to direct current (D.C.) conductivity of the prepared composites were investigated. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR/ATR), X-ray diffraction (XRD), scanning electron microscope/energy dispersive using X-ray analysis (SEM/EDX) and DC conductivity measurements were used to characterize the prepared composites. The effect of the hydroxyl-sodalite-to-graphite and NaOH-to-kaolinite ratios on the electrical conductivity was investigated and evaluated on the generated composite specimens made of Jordanian kaolinite or pure kaolinite. It was demonstrated that increasing the mass ratio of graphite-to-kaolinite in the clay-based composites increased the electrical conductivity of the resultant composites. It was also observed that using 1:1 graphite-to-pure kaolinite mass ratio showed the best electrical conductivity value of 3 × 10-3 s/cm, among the other mass ratios used for pure kaolinite specimens, while using 1:1 mass ratio of graphite-to-Jordanian kaolinite showed a conductivity of 1.6 s/cm. 展开更多
关键词 KAOLINITE GRAPHITE composite inorganic polymers Electroconductive composites
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部