Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorou...We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractiona...In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractional derivatives are described in the Caputo sense.The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations.展开更多
Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differenti...Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed poi...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional int...Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional integro-differential equations D^(α)u(t)+CD^(β)u(t)=Bu(t)+∫_(-∞)td(t-s)Bu(s)ds+f(t),(0≤t≤2π)on periodic Lebesgue-Bochner spaces L^(p)(T;X)and periodic Besov spaces B_(p,q)^(s)(T;X).展开更多
In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corres...In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a...Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.展开更多
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier...The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.展开更多
The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fracti...The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.展开更多
This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a c...This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a comparison result and using the monotone iterative technique.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functio...This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.展开更多
The existence of at feast one solution and the existence of extreme solutions of periodic boundary value problems for first-order integro-differential equations of mixed type are studied, in the presence of generalize...The existence of at feast one solution and the existence of extreme solutions of periodic boundary value problems for first-order integro-differential equations of mixed type are studied, in the presence of generalized upper and laver solutions. The discussion is based an new comparison theorems and coincidence degree and monotone iterative methods.展开更多
In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discr...In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.展开更多
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
基金supported by NSFC Project(11301446,11271145)China Postdoctoral Science Foundation Grant(2013M531789)+3 种基金Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009)Program for Changjiang Scholars and Innovative Research Team in University(IRT1179)Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057)the Research Foundation of Hunan Provincial Education Department(13B116)
文摘We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method.The fractional derivatives are described in the Caputo sense.The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations.
文摘Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金the NSF of China(12171266,12171062)the NSF of Chongqing(CSTB2022NSCQ-JQX0004)。
文摘Let X be a complex Banach space and let B and C be two closed linear operators on X satisfying the condition D(B)?D(C),and let d∈L^(1)(R_(+))and 0≤β<α≤2.We characterize the well-posedness of the fractional integro-differential equations D^(α)u(t)+CD^(β)u(t)=Bu(t)+∫_(-∞)td(t-s)Bu(s)ds+f(t),(0≤t≤2π)on periodic Lebesgue-Bochner spaces L^(p)(T;X)and periodic Besov spaces B_(p,q)^(s)(T;X).
文摘In this article, we develop a fully Discrete Galerkin(DG) method for solving ini- tial value fractional integro-differential equations(FIDEs). We consider Generalized Jacobi polynomials(CJPs) with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. The fractional derivatives are used in the Caputo sense. The numerical solvability of algebraic system obtained from implementation of proposed method for a special case of FIDEs is investigated. We also provide a suitable convergence analysis to approximate solutions under a more general regularity assumption on the exact solution. Numerical results are presented to demonstrate the effectiveness of the proposed method.
文摘Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.
基金The NNSF (99200204) of Liaoning Province, China.
文摘The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of fractional Volterra integrodifferential equations by the Jacobi spectral collocation method using the Jacobi-Gauss collocation points.We convert the fractional order integro-differential equation into integral equation by fractional order integral,and transfer the integro equations into a system of linear equations by the Gausssian quadrature.We furthermore perform the convergence analysis and prove the spectral accuracy of the proposed method in L∞norm.Two numerical examples demonstrate the high accuracy and fast convergence of the method at last.
文摘This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a comparison result and using the monotone iterative technique.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
文摘This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.
文摘The existence of at feast one solution and the existence of extreme solutions of periodic boundary value problems for first-order integro-differential equations of mixed type are studied, in the presence of generalized upper and laver solutions. The discussion is based an new comparison theorems and coincidence degree and monotone iterative methods.
文摘In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.