Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a ...Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs. Design/methodology/approach: In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis. Findings: We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%-4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a "second order SNPR approach" enables a better assessment of the technological relevance of research. Research limitations: The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity. Practical implications: The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured. Originality/value: The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technologyrelevant papers is novel and offers new opportunities in research evaluation practices.展开更多
Spinal cord injury is linked to the interruption of neural pathways,which results in irreversible neural dysfunction.Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord ...Spinal cord injury is linked to the interruption of neural pathways,which results in irreversible neural dysfunction.Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury,which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies.Besides the involvement of endogenous stem cells in neurogenesis and neural repair,exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases.However,to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury,appropriate interventional measures(e.g.,neuromodulation)should be adopted.Neuromodulation techniques,such as noninvasive magnetic stimulation and electrical stimulation,have been safely applied in many neuropsychiatric diseases.There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system;namely,by exciting,inhibiting,or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury.Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth,encourages the formation of new synaptic connections to promote neural plasticity,and improves motor function recovery in patients with spinal cord injury.With the development of biomaterial technology and biomechanical engineering,several emerging treatments have been developed,such as robots,brain-computer interfaces,and nanomaterials.These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury.However,large-scale clinical trials need to be conducted to validate their efficacy.This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence,to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.展开更多
In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and developme...In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and development of multi-channel microchip and MS combination, we will elaborate the key issues of constructing chip-MS platform interface. Then exciting progresses made in this field should be reviewed with well exemplified works, including chip-MS technology for cell introduction, pretreatment of cell secretions and cell metabolite analysis. We will also describe the development of integrated total analysis systems proposed by our group. We hope this brief review will inspire interested readers and provide knowledge about chip-MS platform in the bioanalysis field, particularly in cell analysis and metabolite identifying applications.展开更多
文摘Purpose: First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs. Design/methodology/approach: In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis. Findings: We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%-4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a "second order SNPR approach" enables a better assessment of the technological relevance of research. Research limitations: The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity. Practical implications: The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured. Originality/value: The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technologyrelevant papers is novel and offers new opportunities in research evaluation practices.
基金supported by the Major International(Regional)Joint Research Project of the National Natural Science Foundation of China,No.81820108013(to LMC)the General Research Project of the National Natural Science Foundation of China,No.81772453(to DSX)the National Key Research and Development Program of China,No.2016YFA0100800(to LMC)
文摘Spinal cord injury is linked to the interruption of neural pathways,which results in irreversible neural dysfunction.Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury,which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies.Besides the involvement of endogenous stem cells in neurogenesis and neural repair,exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases.However,to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury,appropriate interventional measures(e.g.,neuromodulation)should be adopted.Neuromodulation techniques,such as noninvasive magnetic stimulation and electrical stimulation,have been safely applied in many neuropsychiatric diseases.There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system;namely,by exciting,inhibiting,or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury.Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth,encourages the formation of new synaptic connections to promote neural plasticity,and improves motor function recovery in patients with spinal cord injury.With the development of biomaterial technology and biomechanical engineering,several emerging treatments have been developed,such as robots,brain-computer interfaces,and nanomaterials.These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury.However,large-scale clinical trials need to be conducted to validate their efficacy.This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence,to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
基金supported by National Natural Science Foundation of China (Nos. 81373373, 21435002, 21621003)
文摘In this review, we highlight the latest development of multi-channel microfluidic chip-mass spectrometry(chip-MS) in cell analysis and metabolite detection. Following a brief introduction about history and development of multi-channel microchip and MS combination, we will elaborate the key issues of constructing chip-MS platform interface. Then exciting progresses made in this field should be reviewed with well exemplified works, including chip-MS technology for cell introduction, pretreatment of cell secretions and cell metabolite analysis. We will also describe the development of integrated total analysis systems proposed by our group. We hope this brief review will inspire interested readers and provide knowledge about chip-MS platform in the bioanalysis field, particularly in cell analysis and metabolite identifying applications.