The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t...The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.展开更多
The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is rep...The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is reported. The esterification kinetics of lactic acid with methanol catalyzed by strong-acid cation-exchange resins (Amberlyst-15,D001, D002, NKC, 002) was studied under the condition that simulates the real catalytic environment. Experimental results were correlated by a Langmuir-Hinselwood model and the nonideality of the solution was taken into account by using activities calculated by the universal quasichemical functional group activity coefficient (UNIFAC) method.A good agreement between the model and the experimental data was achieved. Continuous purification experiments were conducted to find the optimum column configuration and operation condition for the system. The effects of various parameters, e.g. the length of different section of the column, feed rate and ratio of reactants, packing material and catalyst type, were studied. This novel system shows good separation results in lab scale, and is potential for industrial application.展开更多
The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the...The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.展开更多
the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature ...the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature are the factors which influence theion-exchange rate. The increase of solvability, stirring speed andtemperature will speed up the ion-exchange process.展开更多
The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 15...The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.展开更多
The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in ...The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.展开更多
The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic ...The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.展开更多
The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle...The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.展开更多
L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purificati...L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.展开更多
The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acryli...The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.展开更多
The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,soluti...The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl - and Pb 2+ ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions(pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.展开更多
Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects ...Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.展开更多
Basic ion-exchange resins,one kind of polystyryl-supported tertiary amine,were demonstrated to be highly efficient and recyclable catalysts for the fixation of carbon dioxide with aziridines under mild conditions,lead...Basic ion-exchange resins,one kind of polystyryl-supported tertiary amine,were demonstrated to be highly efficient and recyclable catalysts for the fixation of carbon dioxide with aziridines under mild conditions,leading to the formation of 5-aryl-2-oxazolidinone with excellent regio-selectivities.Notably,neither solvents nor any additives were required,and the catalyst could be recovered by simple filtration and directly reused at least five times without significant loss of catalytic activity and selectivity.The present protocol has been applied to reactions of epoxides/propargyl amines with CO_(2)/CS2.This solvent-free process thus represents environmentally friendly catalytic conversion of CO_(2) into value-added chemicals and may have potential in various continuous flow reactors in industry.展开更多
Regeneration of pure water is an important issue not only for the healthy life but also for the fine control of precise processes in various industries.One important issue in ultrahigh purified water is to reduce the ...Regeneration of pure water is an important issue not only for the healthy life but also for the fine control of precise processes in various industries.One important issue in ultrahigh purified water is to reduce the amount of total organic carbon(TOC).Herein,we introduce a new approach to reduce the TOC using the surface silanized nanoparticles,in which the magnetic nanoparticles(mNPs)are silanized and then complexed with ion exchange resin(IER)beads.The Fe3O4 mNPs are surface modified by using high concentrated vinyltrimethoxysilane(VTMS)and then adhered on the surface of IER beads.The surface modified mNPs have a thick-shell of polysiloxane layer varying from 5 to 22 nm depending on the amount of VTMS used,which leads the significant increase of specific surface area.The IER beads embedding VTMS-silanized mNPs achieves about 7μg/L of the TOC level in ultrapure water system,which is two orders less than 228μg/L of the feeding water and one order less than 96μg/L from the system using pristine IER beads.This result is mainly attributed to the polysiloxane layer forming broccoli-like surface structure and some part by the vinyl group of VTMS exposed to the amines in the water.展开更多
A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable ...A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group;the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures(410–500 ℃) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature(<410 ℃) and promotes complete pyrolysis of the copolymer matrix to form holes.展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibupro...The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen(IBU), diclofenac(DC), and sulfadiazine(SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl-and SO2-4suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins.The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters.展开更多
This research investigated the removal capacity of polymeric sub-micron ion-exchange resins(SMR) for removal of lead, copper, zinc, and nickel from natural waters in competition with natural organic matter(NOM). Polym...This research investigated the removal capacity of polymeric sub-micron ion-exchange resins(SMR) for removal of lead, copper, zinc, and nickel from natural waters in competition with natural organic matter(NOM). Polymeric SMR particles were created and tested to ensure that they were adequately dispersed in the solution. They removed little NOM(10%or less) from river water and wastewater, indicating that competition from NOM was not a major concern. SMR were able to remove 82% ± 0.2% of lead, 46% ± 0.6% of copper, 55% ±20% of zinc, and 17% ± 2% of nickel from river water spiked with 500 μg/L of each. Similarly,in wastewater, they were able to remove 86% ± 0.1% of lead, 38% ± 0.8% of copper, 28% ± 1%of zinc, and 11% ± 1% of nickel.展开更多
Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully...Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully investigated. At the first exchange section, the maximum proportion of qualified zeolites(QR) was obtained at a temperature of 70 ℃, a weight hourly space velocity of 0.61 h-1, and an ion concentration of 197 mg/L. The minimum length of mass-transfer zone(MTZ) of the resin bed was achieved at a temperature of 70 ℃, a space velocity of 0.61 h-1, and an ion concentration of 423 mg/L. At the second exchange section, the length of MTZ of the resin bed was significantly increased, and the exchange of Na+ ions contained in zeolite Y was more difficult than that achieved at the first exchange section. In both the first and the second exchange sections, the zeolite Y subjected to ion exchange with the resin maintained the similar physical and chemical properties as compared to those exchanged by the conventional approaches, but the zeolite Y, which was obtained after ion exchange, contained a significantly lower content of Na2 O.展开更多
基金the National Natural Science Fund for Distinguished Young Scholars(22025803)supported by the National Natural Science Foundation of China(22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021018)the financial support of project“Research and development and industrial application of new catalytic materials for green synthesis of MMA to replace highly toxic HCN”(Hebei,20374002D)。
文摘The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.
文摘The purification of lactic acid based on the esterification of raw lactic acid from fermentation broth and then the catalytic distillation hydrolysis of methyl lactate simultaneously to achieve pure lactic acid is reported. The esterification kinetics of lactic acid with methanol catalyzed by strong-acid cation-exchange resins (Amberlyst-15,D001, D002, NKC, 002) was studied under the condition that simulates the real catalytic environment. Experimental results were correlated by a Langmuir-Hinselwood model and the nonideality of the solution was taken into account by using activities calculated by the universal quasichemical functional group activity coefficient (UNIFAC) method.A good agreement between the model and the experimental data was achieved. Continuous purification experiments were conducted to find the optimum column configuration and operation condition for the system. The effects of various parameters, e.g. the length of different section of the column, feed rate and ratio of reactants, packing material and catalyst type, were studied. This novel system shows good separation results in lab scale, and is potential for industrial application.
基金Project (2014CB643405) supported by National Research Development Program of China
文摘The equilibrium adsorption isotherm and kinetic of the sorption process for W and Mo on macro chelating resin D403 were investigated on single Na2 Mo O4 and Na2WO4 solutions.The sorption isotherm results show that the adsorption process of W obeys the Freundlich model very well whereas the exchange process with Mo approximately follows the Henry model.The kinetic experiments show that the intraparticle diffusion process was the rate-determining step for W sorption on the resin,and the corresponding activation energy is calculated to be 21.976 k J/mol.
文摘the desalting property of ion-exchange resins in organic solventis reported by using potassium acetate as a model compound. Theexperimental results show that solvability of the solvent, stirringspeed, and temperature are the factors which influence theion-exchange rate. The increase of solvability, stirring speed andtemperature will speed up the ion-exchange process.
基金supported financially by the Purolite Company and Chinese National Natural Science Foundation(20674069)
文摘The thermal stability of five commercial ion-exchange resin catalysts was studied by means of thermal gravimetric analysis (TGA) at elevated temperatures of up to 600℃ and isothermal temperatures in the range of 150℃ and 200 ℃. Resin samples with different initial water contents were also investigated. The study indicated that TGA, as a complementary evaluating method for the plug flow reactor system approach, could be used as a fast analyzing means for study on the thermal stability of ion-exchange resin catalysts. The stoichiometric calculation of the isothermally treated resin catalysts based on the FTIR analysis and acid capacity confirmed that the weight loss of the resins at 150℃ and 200℃ was caused by the desulfonation process and that desulfonation occurred mainly at the para-position of the benzene ring in the resins. H+ ions and moisture played an important role in the desulfonation process.
基金supported financially by the Purolite Company and the Chinese National Natural Science Foundation (20674069)
文摘The performance of ion-exchange resin catalysts during isobutene (IB) dimerization was investigated under different IB contents,temperatures and liquid-volume hourly space velocity (LHSV) using a plug flow reactor in the absence of any selectivity enhancing component.High IB content and temperature resulted in a high conversion and C12 selectivity bu low C8 selectivity.The influence of LHSV was related with the IB content:LHSV had great effect at high IB content,while the performance of ion-exchange resin changed little with LHSV if IB content was low.The effect of water on the stability of resins was also studied.Desulfonation was observed during the C4 dimerization reaction when water was added to the feed.Chlorinated resin was more stable than conventional polystyrene-based resins during the test.
文摘The retention mechanism of monocarboxylic acids on a cation-exchange resin column was investigated. It was assumed that both Donnan membrane equilibrium and adsorption equilibrium were involved in the chromatographic process. On the basis of the proposed mechanism, an equation was derived for correlating distribution coefficient, Kd, dissociation constant, Aa, and adsorption equilibrium constant, K, of the analyzed acid. By this approach, retention data for some aliphatic acids under different operating conditions were predicted. Results are reasonably in agreement with experiment.
基金Supported by the National Basic Research Program of China (2007CB714300)
文摘The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1066)National Natural Science Foundation of China(No.21306086)Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province(No.BK20151452)
文摘L-phenylalanine, one of the nine essential amino acids for the human body, is extensively used as an ingredient in food, pharmaceutical and nutrition industries. A suitable equilibrium model is required for purification of L-phenylalanine based on ion-exchange chromatography. In this work, the equilibrium uptake of L-phenylalanine on a strong acid-cation exchanger SH11 was investigated experimentally and theoretically. A modified Donnan ion-exchange (DIX) model, which takes the activiW into account, was established to predict the uptake of L-phenylalanine at various solution pH values. The model parameters including selectivity and mean activity coefficient in the resin phase are presented. The modified DIX model is in good agreement with the experimental data. The optimum operating pH value of 2.0, with the highest t-phenylalanine uptake on the resin, is predicted by the model. This basic information combined with the general mass transfer model will lay the foundation for the prediction of dynamic behavior of fixed bed separation process.
文摘The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.
文摘The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl - and Pb 2+ ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions(pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.
文摘Liquid-phase acrylic acid hydration over solid-phase catalysts is a key reaction for the industrial productionof 3-hydroxypropionic acid. However, the relevant literature primarily focuses on the experimental aspects of catalystscreening and exploring reaction conditions, with few accurate descriptions of the reaction kinetics and determination ofthe reaction mechanism. Here, we combined kinetics experiments and theoretical calculations to elucidate the kinetics andmechanism of acrylic acid hydration on a resin catalyst. The pseudo-homogeneous model, and Langmuir-Hinshelwood-Haugen-Watson and Elie-Riedel (ER) heterogeneous models were used to explain the experimental kinetics data. TheER model can explain the experimental data very well, suggesting strong adsorption of acrylic acid on the surface of theresin catalyst. Furthermore, density functional theory calculations show that the hydration follows a stepwise, rather than aconcerted, reaction pathway. The present study provides theoretical insights into the reaction mechanism and kinetics, fillingthe gap in our understanding of the reaction on a fundamental level.
基金supported by the National Natural Science Foundation of China (20672054 & 20872073)the 111 Project of the Ministry of Education of China (B06005)
文摘Basic ion-exchange resins,one kind of polystyryl-supported tertiary amine,were demonstrated to be highly efficient and recyclable catalysts for the fixation of carbon dioxide with aziridines under mild conditions,leading to the formation of 5-aryl-2-oxazolidinone with excellent regio-selectivities.Notably,neither solvents nor any additives were required,and the catalyst could be recovered by simple filtration and directly reused at least five times without significant loss of catalytic activity and selectivity.The present protocol has been applied to reactions of epoxides/propargyl amines with CO_(2)/CS2.This solvent-free process thus represents environmentally friendly catalytic conversion of CO_(2) into value-added chemicals and may have potential in various continuous flow reactors in industry.
基金supported by the Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korea Ministry of Trade Industry&Energy(MOTIE)[10062871,Development of high efficiention exchange materials and modules for preparing UPW for semi-conducting industry applications].
文摘Regeneration of pure water is an important issue not only for the healthy life but also for the fine control of precise processes in various industries.One important issue in ultrahigh purified water is to reduce the amount of total organic carbon(TOC).Herein,we introduce a new approach to reduce the TOC using the surface silanized nanoparticles,in which the magnetic nanoparticles(mNPs)are silanized and then complexed with ion exchange resin(IER)beads.The Fe3O4 mNPs are surface modified by using high concentrated vinyltrimethoxysilane(VTMS)and then adhered on the surface of IER beads.The surface modified mNPs have a thick-shell of polysiloxane layer varying from 5 to 22 nm depending on the amount of VTMS used,which leads the significant increase of specific surface area.The IER beads embedding VTMS-silanized mNPs achieves about 7μg/L of the TOC level in ultrapure water system,which is two orders less than 228μg/L of the feeding water and one order less than 96μg/L from the system using pristine IER beads.This result is mainly attributed to the polysiloxane layer forming broccoli-like surface structure and some part by the vinyl group of VTMS exposed to the amines in the water.
基金supported by the Joint Funds of the National Natural Science Foundation of China (No. U21B2095)the Major Research Project of National Natural Science Foundation of China (No. 91834303)the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 61621002)。
文摘A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 ℃. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group;the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures(410–500 ℃) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature(<410 ℃) and promotes complete pyrolysis of the copolymer matrix to form holes.
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金supported by the National Science Foundation of China (Grant No. 51278253)the Ministry of Water Resources' Special Funds for Scientific Research on Public Causes (No. 201201018)+1 种基金the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materialsa project funded by the priority academic program development of Jiangsu Higher Education Institutions
文摘The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen(IBU), diclofenac(DC), and sulfadiazine(SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl-and SO2-4suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins.The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters.
基金funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 06246)Ontario Research Fund (ORF) (203364)
文摘This research investigated the removal capacity of polymeric sub-micron ion-exchange resins(SMR) for removal of lead, copper, zinc, and nickel from natural waters in competition with natural organic matter(NOM). Polymeric SMR particles were created and tested to ensure that they were adequately dispersed in the solution. They removed little NOM(10%or less) from river water and wastewater, indicating that competition from NOM was not a major concern. SMR were able to remove 82% ± 0.2% of lead, 46% ± 0.6% of copper, 55% ±20% of zinc, and 17% ± 2% of nickel from river water spiked with 500 μg/L of each. Similarly,in wastewater, they were able to remove 86% ± 0.1% of lead, 38% ± 0.8% of copper, 28% ± 1%of zinc, and 11% ± 1% of nickel.
基金the financial support by the State Key Development Program for Basic Research of China(Grant No.2012CB224800)
文摘Ion-exchange process of zeolite Y using ammonium-type resin as an exchange reagent was successfully carried out. The effect of temperature, space velocity and ion concentration on the breakthrough curves was carefully investigated. At the first exchange section, the maximum proportion of qualified zeolites(QR) was obtained at a temperature of 70 ℃, a weight hourly space velocity of 0.61 h-1, and an ion concentration of 197 mg/L. The minimum length of mass-transfer zone(MTZ) of the resin bed was achieved at a temperature of 70 ℃, a space velocity of 0.61 h-1, and an ion concentration of 423 mg/L. At the second exchange section, the length of MTZ of the resin bed was significantly increased, and the exchange of Na+ ions contained in zeolite Y was more difficult than that achieved at the first exchange section. In both the first and the second exchange sections, the zeolite Y subjected to ion exchange with the resin maintained the similar physical and chemical properties as compared to those exchanged by the conventional approaches, but the zeolite Y, which was obtained after ion exchange, contained a significantly lower content of Na2 O.