Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell ma...Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell mass (inner cell mass, ICM) which were isolated by mechanical method on the mouse embryonic fibroblaste cell (MEF) feeder layer or 0.1% gelatin coated dishes. The stem ceils were identified by characterized morphology, alkaline phosphatase stain, differential potency in vivo and immunoehemistry stain. The isolated cells were differentiated by serial induction method that mimicking the intrinsic developmental process of the neural system. Results The isolated cells were positive for alkaline phosphatatse and SSEA-1 ( stage specific embryonic antigen 1 ). Moreover they were identified pluripotent by differentiation in vivo. Therefore the isolated ceils presented the characters of ESCs. Then the isolated cells were able to differentiate into neuroeytes in vitro. Conclusion Mouse embryonic stem ceils isolation, culture and differentiation system has been established.展开更多
This study was designed to verify the stem cell properties of sheep amniotic epithelial cells and their capacity for neural differentiation. Immunofluorescence microscopy and reverse transcription-PCR revealed that th...This study was designed to verify the stem cell properties of sheep amniotic epithelial cells and their capacity for neural differentiation. Immunofluorescence microscopy and reverse transcription-PCR revealed that the sheep amniotic epithelial cells were positive for the embryonic stem cell marker proteins SSEA-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81, and the totipotency-associated genes Oct-4, Sox-2 and Rex-1, but negative for Nanog. Amniotic epithelial cells expressed β-Ⅲ-tubulin, glial fibrillary acidic protein, nestin and microtubule-associated protein-2 at 28 days after induction with serum-free neurobasal-A medium containing B-27. Thus, sheep amniotic epithelial cells could differentiate into neurons expressing β-Ⅲ-tubulin and microtubule-associated protein-2, and glial-like cells expressing glial fibrillary acidic protein, under specific conditions.展开更多
Spermatogonial stem cells(SSCs)have great applications in both reproductive and regenerative medicine.Primates including monkeys are very similar to humans with regard to physiology and pathology.Nevertheless,little i...Spermatogonial stem cells(SSCs)have great applications in both reproductive and regenerative medicine.Primates including monkeys are very similar to humans with regard to physiology and pathology.Nevertheless,little is known about the isolation,the characteristics,and the culture of primate SSCs.This study was designed to identify,isolate,and culture monkey SSCs.Immunocytochemistry was used to identify markers for monkey SSCs.Glial cell line-derived neurotrophic factor family receptor alpha-1(GFRAl)-enriched spermatogonia were isolated from monkeys,namely Macaca fascicularis(M.fascicularis),by two-step enzymatic digestion and magnetic-activated cell sorting,and they were cultured on precoated plates in the conditioned medium.Reverse transcription-polymerase chain reaction(RT-PCR),immunocytochemistry,and RNA sequencing were used to compare phenotype and transcriptomes in GFRAl-enriched spermatogonia between 0 day and 14 days of culture,and xenotransplantation was performed to evaluate the function of GFRAl-enriched spermatogonia.SSCs shared some phenotypes with rodent and human SSCs.GFRAl-enriched spermatogonia with high purity and viability were isolated from M.fascicularis testes.The freshly isolated cells expressed numerous markers for rodent SSCs,and they were cultured for 14 days.The expression of numerous SSC markers was maintained during the cultivation of GFRAl-enriched spermatogonia.RNA sequencing reflected a 97.3%similarity in global gene profiles between 0 day and 14 days of culture.The xenotransplantation assay indicated that the GFRAl-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-Kitw/w(W)mutant mice.Collectively,GFRAl-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo.This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.展开更多
基金This work was supported by China National Programs of High and New Technology Development ( 863 ) ( 2002AA216101 ) National Natural Science Foundation of China (30300110).
文摘Objective To invest the efficient method which can culture and induce embryonic stem cells to neuroeyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell mass (inner cell mass, ICM) which were isolated by mechanical method on the mouse embryonic fibroblaste cell (MEF) feeder layer or 0.1% gelatin coated dishes. The stem ceils were identified by characterized morphology, alkaline phosphatase stain, differential potency in vivo and immunoehemistry stain. The isolated cells were differentiated by serial induction method that mimicking the intrinsic developmental process of the neural system. Results The isolated cells were positive for alkaline phosphatatse and SSEA-1 ( stage specific embryonic antigen 1 ). Moreover they were identified pluripotent by differentiation in vivo. Therefore the isolated ceils presented the characters of ESCs. Then the isolated cells were able to differentiate into neuroeytes in vitro. Conclusion Mouse embryonic stem ceils isolation, culture and differentiation system has been established.
基金funded by the National High-Tech Research and Development Program of China(863Program),No.2008AA101005
文摘This study was designed to verify the stem cell properties of sheep amniotic epithelial cells and their capacity for neural differentiation. Immunofluorescence microscopy and reverse transcription-PCR revealed that the sheep amniotic epithelial cells were positive for the embryonic stem cell marker proteins SSEA-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81, and the totipotency-associated genes Oct-4, Sox-2 and Rex-1, but negative for Nanog. Amniotic epithelial cells expressed β-Ⅲ-tubulin, glial fibrillary acidic protein, nestin and microtubule-associated protein-2 at 28 days after induction with serum-free neurobasal-A medium containing B-27. Thus, sheep amniotic epithelial cells could differentiate into neurons expressing β-Ⅲ-tubulin and microtubule-associated protein-2, and glial-like cells expressing glial fibrillary acidic protein, under specific conditions.
基金the National Natural Science Foundation of China(31671550,31872845)National Key R&D Project(2016YFC1000606)+3 种基金High Level Talent Gathering Project in Hunan Province(2018RS3066)Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defect in Hunan Province(2019SK1012)Key Grant of Research and Development in Hunan Province(2020DK2002)The Open Fund of the NHC Key Laboratory of Male Reproduction and Genetics(KF201802).
文摘Spermatogonial stem cells(SSCs)have great applications in both reproductive and regenerative medicine.Primates including monkeys are very similar to humans with regard to physiology and pathology.Nevertheless,little is known about the isolation,the characteristics,and the culture of primate SSCs.This study was designed to identify,isolate,and culture monkey SSCs.Immunocytochemistry was used to identify markers for monkey SSCs.Glial cell line-derived neurotrophic factor family receptor alpha-1(GFRAl)-enriched spermatogonia were isolated from monkeys,namely Macaca fascicularis(M.fascicularis),by two-step enzymatic digestion and magnetic-activated cell sorting,and they were cultured on precoated plates in the conditioned medium.Reverse transcription-polymerase chain reaction(RT-PCR),immunocytochemistry,and RNA sequencing were used to compare phenotype and transcriptomes in GFRAl-enriched spermatogonia between 0 day and 14 days of culture,and xenotransplantation was performed to evaluate the function of GFRAl-enriched spermatogonia.SSCs shared some phenotypes with rodent and human SSCs.GFRAl-enriched spermatogonia with high purity and viability were isolated from M.fascicularis testes.The freshly isolated cells expressed numerous markers for rodent SSCs,and they were cultured for 14 days.The expression of numerous SSC markers was maintained during the cultivation of GFRAl-enriched spermatogonia.RNA sequencing reflected a 97.3%similarity in global gene profiles between 0 day and 14 days of culture.The xenotransplantation assay indicated that the GFRAl-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-Kitw/w(W)mutant mice.Collectively,GFRAl-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo.This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.