期刊文献+
共找到1,920篇文章
< 1 2 96 >
每页显示 20 50 100
A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design
1
作者 Xinyu LIAN Bing LIU +1 位作者 Huaxia DENG Xinglong GONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1279-1294,共16页
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str... To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator. 展开更多
关键词 low frequency NONLINEAR vibration isolator quasi-zero stiffness(QzS)
下载PDF
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
2
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
下载PDF
A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
3
作者 Wei WEI Feng GUAN Xin FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1171-1188,共18页
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ... A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency. 展开更多
关键词 metamaterial and metastructure vibration isolation bandgap wave insulation PLATE
下载PDF
Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness
4
作者 Zeyu CHAI J.T.HAN +3 位作者 Xuyuan SONG Jian ZANG Yewei ZHANG Zhen ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1371-1386,共16页
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var... A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters. 展开更多
关键词 bionic vibration isolation X-shaped structure variable stiffness structure nonlinear dynamics prototype experiment
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
5
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
A human-sensitive frequency band vibration isolator for heavy-duty truck seats
6
作者 Qingqing LIU Shenlong WANG +5 位作者 Ge YAN Hu DING Haihua WANG Qiang SHI Xiaohong DING Huijie YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1733-1748,共16页
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven... In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers. 展开更多
关键词 human-sensitive frequency band quasi-zero stiffness(QZS) heavy-duty truck seat real random road spectrum low-frequency vibration isolation
下载PDF
Experimental research on static characteristics of special wire-rope isolator 被引量:3
7
作者 姜洪源 闫辉 +1 位作者 李瑰贤 Alexander M.Ulannov 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期505-509,共5页
Based on analysis of the work conditions and structural characteristics of the exterior pipeline of the aero-engine, a kind of cantilever-structure wire-rope isolator fitted to the exterior pipeline of the aero-engine... Based on analysis of the work conditions and structural characteristics of the exterior pipeline of the aero-engine, a kind of cantilever-structure wire-rope isolator fitted to the exterior pipeline of the aero-engine is designed for supporting and damping purposes. By static experiments, the static hysteresis loop, the relationship of stiffness and amplitude, and the relationship between the energy dissipation coefficient and the amplitude are obtained. Analyses show that the wire-rope isolator presents obvious hysteresis characteristics, and the characteristics of the isolator, such as stiffness and damping, behave obviously nonlinearly when the amplitude value of deformation changes. At the same time, by changing the structure parameters of the wire-rope, the wirerope isolators can be made with different functions to satisfy different work conditions. The research results have important reference values for the application of the wire-rope isolator on the exterior pipeline of an aeroengine. 展开更多
关键词 wire-rope isolator pipe-support hysteresis characteristic
下载PDF
EXPERIMENTAL STUDY OF FORCED SHOCK TRAIN OSCILLATION IN ISOLATOR UNDER ASYMMETRIC INCOMING FLOW 被引量:3
8
作者 曹学斌 张堃元 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期73-80,共8页
To analyze the response of the wall pressure fluctuation in an isolator when the shock train is subjected to a periodic motion at a low frequency,the isolator experiment is conducted in a blow-down supersonic wind tun... To analyze the response of the wall pressure fluctuation in an isolator when the shock train is subjected to a periodic motion at a low frequency,the isolator experiment is conducted in a blow-down supersonic wind tunnel at free stream Mach number of 1.98 under asymmetric incoming flow.Experimental results show that:The isolator effectively isolates the periodic back pressure fluctuation from affecting upstream undisturbed flow;The wall pressure fluctuations are due to the propagation of wave fronts with the second acoustic mode,but they are subjected to an oscillating shock train in the most part of the shock oscillation region;The attenuation of wall pressure fluctuations on the lower wall with thick boundary layer accords with the exponential law,but it fluctuates on the upper wall with thin boundary layer in the shock oscillation region. 展开更多
关键词 engines shock waves pressure distribution isolator
下载PDF
EFFECTS OF INCOMING FLOW ASYMMETRY ON SHOCK TRAIN STRUCTURES IN CONSTANT-AREA ISOLATORS 被引量:2
9
作者 王成鹏 张堃元 程克明 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期1-7,共7页
To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i... To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data. 展开更多
关键词 asymmetric supersonic flow shock train isolator design SCRAMJET wind tunnel test
下载PDF
Mechanical properties of disc-spring vibration isolators based on boundary friction 被引量:2
10
作者 贾方 张凡成 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期39-44,共6页
To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis o... To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators. 展开更多
关键词 disc-spring vibration isolator boundary friction hysteresis curve dynamic stiffness DAMPING finite element analysis FEA
下载PDF
Theoretical Research on Electrorheological Isolator
11
作者 张少华 李美艳 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期349-355,共7页
A new type of isolator, the electrorheology (ER) isolator, is mainly described. Through theoretical analysis, a simplified physical model is established under some hypotheses and a series of motion equations are deduc... A new type of isolator, the electrorheology (ER) isolator, is mainly described. Through theoretical analysis, a simplified physical model is established under some hypotheses and a series of motion equations are deduced. According to the transmissibility curve simulation under different electric field strengths, the main factors influencing ER isolator’s working properties have been ascertained. Finally, it proves that ER isolator works well in both low and high frequency zones, it can decrease the force transmitted and enlarge the isolation frequency domain efficiently. 展开更多
关键词 ELECTRORHEOLOGY isolator variable damping active-isolating
下载PDF
Improving the Seismic Performance of Staircases in Building Structures with a Novel Isolator
12
作者 Yafei Zhang Ping Tan +1 位作者 Haitao Ma Marco Donà 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期415-431,共17页
A staircase provides the main escape way from a building in an emergency.Unfortunately,it may suffer severe damages or even collapse during an earthquake.For improving the seismic performance of staircases,this paper ... A staircase provides the main escape way from a building in an emergency.Unfortunately,it may suffer severe damages or even collapse during an earthquake.For improving the seismic performance of staircases,this paper proposes an innovative staircase isolator with the features of lightweight,costeffective and ease of construction and replacement,which is formed by suitable engineering plastic shims between rubber layers.A connection construction scheme is also proposed for the isolated staircase.Systematic performance tests have been carried out to characterize the isolator in terms of mechanic behavior and ultimate states.The test results show that mechanical properties of the proposed staircase isolator are excellent and suitable for staircase in building structure.In order to investigate the influence of staircase on building structural responses,time history analyses of a typical building structure without staircase(WS),with fixed staircase(FS)and with isolated staircase(IS)are conducted and compared within the environment of SAP2000.Results show that staircase isolation can effectively eliminate the diagonal bracing effect of staircase slab and make structural components uniformly stressed.When the novel isolator is employed for staircase in a building structure,there is no vulnerable position in staircase and the performance of staircase in building structure can be greatly enhanced. 展开更多
关键词 Seismic isolation seismic performance of staircases staircase isolation engineering-plastics rubber isolator rubber isolator
下载PDF
基于TypeMock Isolator隔离框架的单元测试
13
作者 周建辉 《常州信息职业技术学院学报》 2013年第4期23-26,共4页
首先分析了单元测试的重要性,然后讨论了单元测试面临的难题,重点介绍了解决这些难题的隔离框架TypeMock Isolator的众多优点,最后研究了该框架在一个平台开发中的应用,包括测试环境搭建、测试组织、典型案例、代码运行,实践证明,应用... 首先分析了单元测试的重要性,然后讨论了单元测试面临的难题,重点介绍了解决这些难题的隔离框架TypeMock Isolator的众多优点,最后研究了该框架在一个平台开发中的应用,包括测试环境搭建、测试组织、典型案例、代码运行,实践证明,应用该框架可以大大提高单元测试效率,是.Net项目的单元测试隔离框架的首选。 展开更多
关键词 单元测试 隔离框架 TypeMock isolator
下载PDF
Modeling,analysis,and simulation of X-shape quasi-zero-stiffness-roller vibration isolators 被引量:5
14
作者 Xiaoye MAO Mengmeng YIN +3 位作者 Hu DING Xiaofeng GENG Yongjun SHEN Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1027-1044,共18页
Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape iso... Existing quasi-zero stiffness(QZS)isolators are reviewed.In terms of their advantages,a novel X-shape QZS isolator combined with the cam-roller-spring mechanism(CRSM)is proposed.Different from the existing X-shape isolators,oblique springs are used to enhance the negative stiffness of the system.Meanwhile,the CRSM is used to eliminate the gravity of the loading mass,while the X-shape structure leaves its static position.The existing QZS isolators are demonstrated and classified according to their nonlinearity mechanisms and classical shapes.It is shown that the oblique spring can realize negative stiffness based on the simplest mechanism.The X-shape has a strong capacity of loading mass,while the CRSM can achieve a designed restoring force at any position.The proposed isolator combines all these advantages together.Based on the harmonic balance method(HBM)and the simulation,the displacement transmissibilities of the proposed isolator,the X-shape isolators just with oblique springs,and the X-shape isolators in the traditional form are studied.The results show that the proposed isolator has the lowest beginning isolation frequency and the smallest maximum displacement transmissibility.However,it still has some disadvantages similar to the existing QZS isolators.This means that its parameters should be designed carefully so as to avoid becoming a bistable system,in which there are two potential wells in the potential energy curve and thus the isolation performance will be worsened. 展开更多
关键词 quasi-zero stiffness(QZS) cam-roller X-shape isolator nonlinear isolation
下载PDF
Numerical investigation of the seismic response of a UHV composite bypass switch retrofitted with wire rope isolators 被引量:6
15
作者 Yang Zhenyu Xie Qiang +1 位作者 He Chang Xue Songtao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期275-290,共16页
An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom s... An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom section although hollow composite insulators with high flexural strength are adopted.Since the standard retrofitting strategy by using stiffer supports cannot reduce stress responses,wire rope isolation is introduced.The optimal design of isolation considers both stress and displacement responses since the slenderness and composite material of insulators contribute to significant displacement.The results show that properly designed isolation can significantly reduce stress without excessive displacement responses.A larger radius configuration helps to improve the applicability of small stiffness isolators under high winds.When the isolation still cannot satisfy the requirement,smaller stiffness isolators with a larger radius,or isolators with increased loops and smaller radius,can be introduced to gain better energy dissipation capacity and effectiveness in response mitigation.Accordingly,a three-step design procedure is proposed to increase the damping force but fix the rotational stiffness of isolation.Hence,the application of wire rope isolation can be extended to UHV composite BPS with a low natural frequency,but conductors with enough redundancy should be used. 展开更多
关键词 UHV composite bypass switch seismic analysis seismic performance upgrading wire rope isolator
下载PDF
Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine 被引量:4
16
作者 Guoxin JIN Zhenghao WANG Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第6期813-824,共12页
Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the... Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the high load capacity.In this paper,inspired by the human spine,we propose a novel bionic human spine inspired quasi-zero stiffness(QZS)vibration isolator which consists of a cascaded multi-stage negative stiffness structure.The force and stiffness characteristics are investigated first,the dynamic model is established by Newton’s second law,and the isolation performance is analyzed by the harmonic balance method(HBM).Numerical results show that the bionic isolator can obtain better low-frequency isolation performance by increasing the number of negative structure stages,and reducing the damping values and external force values can obtain better low-frequency isolation performance.In comparison with the linear structure and existing traditional QZS isolator,the bionic spine isolator has better vibration isolation performance in low-frequency regions.It paves the way for the design of bionic ultra-low-frequency isolators and shows potential in many engineering applications. 展开更多
关键词 bionic spine inspired vibration isolator harmonic balance method(HBM) quasi-zero stiffness(QZS) ultra-low frequency vibration isolation
下载PDF
Research on the dynamic performance of ship isolator system that use magnetorheological dampers 被引量:3
17
作者 DENG Zhong-chao YAO Xiong-liang +3 位作者 ZHANG Da-gang 邓忠超 姚熊亮 张大刚 《Journal of Marine Science and Application》 2009年第4期291-297,共7页
Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a n... Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads. 展开更多
关键词 magnetorheological fluid damper vibration reduction shock resistance isolator
下载PDF
Performance of a base isolator with shape memory alloy bars 被引量:3
18
作者 Fabio Casciati Lucia Faravelli Karim Hamdaoui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第4期401-408,共8页
A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers. A prototype of the device was built and experimentally tested on the ... A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers. A prototype of the device was built and experimentally tested on the shaking table. The new base isolation device consists of two disks, one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers, and at least three inclined shape memory alloy (SMA) bars. The role of the SMA bars is to limit the relative motion between the base and the superstructure, to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device. To verify the expected performance, a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes. It is shown that the main feature of the proposed base isolation device is that for cyclic loading, the super-elastic behavior of the alloy results in wide load-displacement loops, where a large amount of energy is dissipated. 展开更多
关键词 base isolator dynamic excitation energy dissipation shape memory alloy shaking table test
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:2
19
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
Pseudo-Dynamic Testing for Seismic Performance Assessment of Buildings with Seismic Isolation System Using Scrap Tire Rubber Pad Isolators 被引量:6
20
作者 Huma Kanta Mishra Akira Igarashi +1 位作者 Dang Ji Hiroshi Matsushima 《Journal of Civil Engineering and Architecture》 2014年第1期73-88,共16页
Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically mode... Investigation of seismic performance of buildings with STRP (scrap tire rubber pad) seismic isolators by means of pseudo-dynamic tests and numerical simulation is presented. The isolated building is numerically modeled, while the base isolation layer is considered as the experimental substructure in the pseudo-dynamic tests. The test result verifies that the STRP isolator shows acceptable shear deformation performance predicted by the design methods, and demonstrated that seismic isolation using STRP works as a protective measure to provide enhanced seismic performance of the building indicated by the reduction of top floor absolute acceleration, drift and base shear as designated. 展开更多
关键词 Pseudodynamic test STRP isolator numerical simulation base isolation seismic performance.
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部