A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
The overall reaction was determined on the basis of the dissociation constant of TBA and the ratio of the ligand to the rare earth ion in the complex.The rate law,rate constants and acitivition energies for the reacti...The overall reaction was determined on the basis of the dissociation constant of TBA and the ratio of the ligand to the rare earth ion in the complex.The rate law,rate constants and acitivition energies for the reaction of La^(3+),Gd^(3+)and Ho^(3+)with TBA were studied.It is shown in the study that prerequisites for performing differential rate analysis for binary rare earths with TBA are that the pseudo-first-order parallel reaction mechanism should be conformed with,no multinuclear complex would be formed and the co-coloration effects could be neglected.展开更多
The kinetic behaviours of the substitution reaction of rare earth-PHA with CyDTA were studied systemati- cally.The relationship between the rate constant and atomic number was discussed.The rate differentiation val- u...The kinetic behaviours of the substitution reaction of rare earth-PHA with CyDTA were studied systemati- cally.The relationship between the rate constant and atomic number was discussed.The rate differentiation val- ue R_d(R_d=lgk_(z+n)-lgk_z)was proposed to evaluate the possibility of differential kinetic analysis.The R_d value between the neighbouring lanthanide ions first increases and then decreases along with increasing atomic number, so that the middle and heavy rare earth mixture(such as Sm-Gd and Gd-Y)are ideal systems for the differential rate kinetic analysis.展开更多
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p...The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.展开更多
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s...The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.展开更多
In the conversion of methane and propane under high temperature and pressure,the ignition delay time(IDT)is a key parameter to consider for designing an inherently safe process.In this study,the IDT characteristics of...In the conversion of methane and propane under high temperature and pressure,the ignition delay time(IDT)is a key parameter to consider for designing an inherently safe process.In this study,the IDT characteristics of methane and propane(700–1000 K,10–20 bar)were studied experimentally and using kinetic modeling tools at stoichiometric fuel-tooxygen ratios.All the experiments were conducted through insentropic compression.The reliable experimental data were obtained by using the adiabatic core hypothesis,which can be used to generate and validate the detailed chemical kinetics model.The IDTs of methane and propane were recorded by a rapid compression machine(RCM)and compared to the predicted values obtained by the NUIGMech 3.0 mechanism.To test the applicability of NUIGMech 3.0 under different reaction conditions,the influence of temperature in the range of 700–1000 K(and the influence of pressure in the range of 10–20 bar)on the IDT was studied.The results showed that NUIGMech 3.0 could reasonably reproduce the experimentally determined IDT under the wide range of conditions studied.The constant volume chemical kinetics model was used to reveal the effect of temperature on the elementary reaction,and the negative temperature coefficient(NTC)behavior of propane was also observed at 20 bar.The experimental data can serve as a reference for the correction and application of kinetic data,as well as provide a theoretical basis for the safe conversion of low-carbon hydrocarbon chemicals.展开更多
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine...The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.展开更多
In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of...A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.展开更多
The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magn...The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magnetite-based iron ore was pre-oxidized at 800 and1000℃ for a certain time to reach a partly oxidation and deeply oxidation state.The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy(SEM).The reaction kinetic mechanism was determined based on the double-logarithm analysis.The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors.The lower oxidation temperature is more beneficial for the reduction rate,especially in the later reduction stage.The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors.Based on the kinetic analysis,the reduction progress can be divided into three stages.The reduction mechanism was discussed combing the surface morphology and phase structure.展开更多
To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,g...To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.展开更多
A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion wer...A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.展开更多
The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied ...The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied were analyzed by mechanism-function method. The results indicate that three carbon species adopt different oxidation mechanisms due to their different structures. The oxidation of carbon nanotubes with cylindrical structure follows contracting volume reaction mechanism [R3 mechanism, 1- (1- α)^1/3 = kt], indicating that the oxidation of carbon nanotubes takes place from the ends to the center. For graphite with planar sandwich structure, the oxidation starts at the edges initially and gradually moves toward the center, which corresponds to contracting area phase boundary reaction mechanism [R2 mechanism, 1 - (1 - α)^1/2 = kt]. The oxidation of C60 with spherical structure, however, is complex and apparently cannot be illustrated with a single kinetic model. The values of apparent activation energy obtained by the mechanism-function method are (145 ± 5) kJ·mol^-1 for carbon nanotubes and (193 ± 7) kJ·mol^-1 for graphite, respectively, while the value of apparent activation energy for C60 determined using Kissinger method is 91 kJ·mol^-1。展开更多
This work deals with the kinetics of co-condensation polymerization of AB2 and AB monomers, giving expressions of the two-dimensional molecular weight distribution function and the number/weight average molecular weig...This work deals with the kinetics of co-condensation polymerization of AB2 and AB monomers, giving expressions of the two-dimensional molecular weight distribution function and the number/weight average molecular weights of the resulting copolymers. The two-dimensional molecular weight distribution depends on two indices, n and l, which are the respective numbers of AB2 and AB units in a copolymer species. The evolution of the two-dimensional weight and z distributions during the co-condensation polymerization has been evaluated systematically. Finally, the two-dimensional distribution was transformed into a one-dimensional molecular weight distribution with only one variable (the molecular weight of the products instead of the degree of polymerization). The calculated results show that the highly branched copolymer has a very broad molecular weight distribution when the co-condensation polymerization approaches completion.展开更多
Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperforma...Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.展开更多
A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The ...A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The flow is stopped when the reagent zone comes in the flow cell, where absorbance-time data are collected at 580nm wavelength. The linear range of the determination is 0.1 -10μg/ml CN-. The sampling rate is 60h-1 and the relative standard deviation is 1.6% (n=16) at 5.0 μg/ml CN-1 level. With satisfactory results, the proposed method was applied to the determination of free cyanide in wastewater without sample pretreatment.展开更多
Human Activity Recognition(HAR)has always been a difficult task to tackle.It is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination w...Human Activity Recognition(HAR)has always been a difficult task to tackle.It is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things(IoT).Human Activity Recognition data can be recorded with the help of sensors,images,or smartphones.Recognizing daily routine-based human activities such as walking,standing,sitting,etc.,could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network(2D CNN)MODEL,Long Short Term Memory(LSTM)Model,Bidirectional long short-term memory(Bi-LSTM)are used for the classification.It has been demonstrated that recognizing the daily routine-based on human activities can be extremely accurate,with almost all activities accurately getting recognized over 90%of the time.Furthermore,because all the examples are generated from only 20 s of data,these actions can be recognised fast.Apart from classification,the work extended to verify and investigate the need for wearable sensing devices in individually walking patients with Cerebral Palsy(CP)for the evaluation of chosen Spatio-temporal features based on 3D foot trajectory.Case-control research was conducted with 35 persons with CP ranging in weight from 25 to 65 kg.Optical Motion Capture(OMC)equipment was used as the referral method to assess the functionality and quality of the foot-worn device.The average accuracy±precision for stride length,cadence,and step length was 3.5±4.3,4.1±3.8,and 0.6±2.7 cm respectively.For cadence,stride length,swing,and step length,people with CP had considerably high inter-stride variables.Foot-worn sensing devices made it easier to examine Gait Spatio-temporal data even without a laboratory set up with high accuracy and precision about gait abnormalities in people who have CP during linear walking.展开更多
A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial ...A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial p H value and initial water content of the soil.Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants(k values) were calculated.The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well.Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation.A higher k value could be achieved in the lower initial pyrene content(the value was 100 mg kg^-1).The k value of pyrene oxidation in the case of p H=4 was 11.2 times higher than the value obtained under the condition of p H=9,while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP.展开更多
The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature...The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of ML at different heating rates were stud- ied. The results showed that the thermal decomposition characteristics of ML under nitrogen and oxygen atmo- spheres were macroscopically similar, although ML exhibited relatively lower thermal stability under an oxy- gen atmosphere than under a nitrogen atmosphere. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature, and the rate of maximum weight loss of ML under an oxygen atmosphere were much lower than those under a nitrogen atmosphere and increased with increasing heating rates under either oxygen or nitrogen atmosphere. In addition, the kinetic characteristics of thermal decomposition of ML were elucidated based on the experimental results and by the multiple linear regression method. The activation energy, pre-exponential factor, reaction order, and the kinetic equation for thermal decomposition of ML were obtained. The comparison of experimental and calculated data and the analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for pyrolysis of ML with relative errors of about 1%. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of ML was also confirmed.展开更多
The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the ...The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.展开更多
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
基金The Project was supported by the National Natural Science Foundation of China
文摘The overall reaction was determined on the basis of the dissociation constant of TBA and the ratio of the ligand to the rare earth ion in the complex.The rate law,rate constants and acitivition energies for the reaction of La^(3+),Gd^(3+)and Ho^(3+)with TBA were studied.It is shown in the study that prerequisites for performing differential rate analysis for binary rare earths with TBA are that the pseudo-first-order parallel reaction mechanism should be conformed with,no multinuclear complex would be formed and the co-coloration effects could be neglected.
文摘The kinetic behaviours of the substitution reaction of rare earth-PHA with CyDTA were studied systemati- cally.The relationship between the rate constant and atomic number was discussed.The rate differentiation val- ue R_d(R_d=lgk_(z+n)-lgk_z)was proposed to evaluate the possibility of differential kinetic analysis.The R_d value between the neighbouring lanthanide ions first increases and then decreases along with increasing atomic number, so that the middle and heavy rare earth mixture(such as Sm-Gd and Gd-Y)are ideal systems for the differential rate kinetic analysis.
文摘The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.
基金supported by the Natural Science Foundation of China under Grant(No.52172099)the Provincial Joint Fund of Shaanxi(2021JLM-28).
文摘The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment.
基金supported by the National Natural Science Foundation of China [Grant No. 22278452]the SINOPEC Research Institute of Safety Engineering for financially supporting this project。
文摘In the conversion of methane and propane under high temperature and pressure,the ignition delay time(IDT)is a key parameter to consider for designing an inherently safe process.In this study,the IDT characteristics of methane and propane(700–1000 K,10–20 bar)were studied experimentally and using kinetic modeling tools at stoichiometric fuel-tooxygen ratios.All the experiments were conducted through insentropic compression.The reliable experimental data were obtained by using the adiabatic core hypothesis,which can be used to generate and validate the detailed chemical kinetics model.The IDTs of methane and propane were recorded by a rapid compression machine(RCM)and compared to the predicted values obtained by the NUIGMech 3.0 mechanism.To test the applicability of NUIGMech 3.0 under different reaction conditions,the influence of temperature in the range of 700–1000 K(and the influence of pressure in the range of 10–20 bar)on the IDT was studied.The results showed that NUIGMech 3.0 could reasonably reproduce the experimentally determined IDT under the wide range of conditions studied.The constant volume chemical kinetics model was used to reveal the effect of temperature on the elementary reaction,and the negative temperature coefficient(NTC)behavior of propane was also observed at 20 bar.The experimental data can serve as a reference for the correction and application of kinetic data,as well as provide a theoretical basis for the safe conversion of low-carbon hydrocarbon chemicals.
基金This work was financially supported by the National Natural Science Foundation of China(No.52171144)the Fundamental Research Special Zone Program of Shanghai Jiao Tong University(No.21TQ1400215).
文摘The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
文摘A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.
基金the funding support of K1-MET GmbH,metallurgical competence centerthe financial support from the program of China Scholarship Council(No.201908420284)。
文摘The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magnetite-based iron ore was pre-oxidized at 800 and1000℃ for a certain time to reach a partly oxidation and deeply oxidation state.The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy(SEM).The reaction kinetic mechanism was determined based on the double-logarithm analysis.The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors.The lower oxidation temperature is more beneficial for the reduction rate,especially in the later reduction stage.The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors.Based on the kinetic analysis,the reduction progress can be divided into three stages.The reduction mechanism was discussed combing the surface morphology and phase structure.
文摘To get fiber motion in condensing zone of compact spinning,velocity of this area is achieved by simulation,and then a bead-elastic rod fiber model is established.Based on simulation and dynamic analysis on this zone,governing equations are constructed and Runge-Kutta approach is used.Lastly,trajectories of fibers are calculated by specially designed Matlab procedure according to the principles mentioned above.Results show that fiber motions at different initial positions are different;X-axis velocity component makes fibers gathering on sides of suction slot;Y-axis airflow gets fibers gradually close and then stick to the surface of lattice apron.Fiber motions also reflect that the compact spinning process in condensing zone can be divided into three parts:fast convergence zone,adjustment convergence zone,and steady convergence zone.
基金Supported by the National Natural Science Foundation(61372053)the National High Technology Research and Development Program(2012AA040506)
文摘A novel thermal-assisted ultra-violet(UV) photocatalysis digestion method for the determination of total phosphorus(TP) in water samples was introduced in this work. The photocatalytic experiments for TP digestion were conducted using a 365 nm wavelength UV light and Ti O2 particles as the photocatalyst. Sodium tripolyphosphate and sodium glycerophosphate were used as the typical components of TP and the digested samples were then determined by spectrophotometry after phosphomolybdenum blue reaction. The effects of operational parameters such as reaction time and temperature were studied for the digestion of TP and the kinetic analysis of two typical components was performed in this paper. The pseudo-first-order rate constants k of two phosphorus compounds at different temperatures were obtained and the Arrhenius equation was employed to explain the effect of temperature on rate constant k. Compared with the conventional thermal digestion method for TP detection, it was found that the temperature was decreased from 120 °C to 60 °C with same conversion rate and time in this thermal-assisted UV digestion method, which enabled the digestion process work at normal pressure. Compared with the individual ultra-violet(UV) photocatalysis process, the digestion time was also decreased from several hours to half an hour using the thermal-assisted UV digestion method. This method will not lead to secondary pollution since no oxidant was needed in the thermal-assisted UV photocatalysis digestion process, which made it more compatible with electrochemical detection of TP.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 500105).
文摘The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied were analyzed by mechanism-function method. The results indicate that three carbon species adopt different oxidation mechanisms due to their different structures. The oxidation of carbon nanotubes with cylindrical structure follows contracting volume reaction mechanism [R3 mechanism, 1- (1- α)^1/3 = kt], indicating that the oxidation of carbon nanotubes takes place from the ends to the center. For graphite with planar sandwich structure, the oxidation starts at the edges initially and gradually moves toward the center, which corresponds to contracting area phase boundary reaction mechanism [R2 mechanism, 1 - (1 - α)^1/2 = kt]. The oxidation of C60 with spherical structure, however, is complex and apparently cannot be illustrated with a single kinetic model. The values of apparent activation energy obtained by the mechanism-function method are (145 ± 5) kJ·mol^-1 for carbon nanotubes and (193 ± 7) kJ·mol^-1 for graphite, respectively, while the value of apparent activation energy for C60 determined using Kissinger method is 91 kJ·mol^-1。
基金The Project Supported by the National Natural Science Foundation of China (No. 50233030)
文摘This work deals with the kinetics of co-condensation polymerization of AB2 and AB monomers, giving expressions of the two-dimensional molecular weight distribution function and the number/weight average molecular weights of the resulting copolymers. The two-dimensional molecular weight distribution depends on two indices, n and l, which are the respective numbers of AB2 and AB units in a copolymer species. The evolution of the two-dimensional weight and z distributions during the co-condensation polymerization has been evaluated systematically. Finally, the two-dimensional distribution was transformed into a one-dimensional molecular weight distribution with only one variable (the molecular weight of the products instead of the degree of polymerization). The calculated results show that the highly branched copolymer has a very broad molecular weight distribution when the co-condensation polymerization approaches completion.
基金supported by Beijing Natural Science Foundation(JQ20004)National Key Research and Development Program(2016YFA0202500)Scientific and Technological Key Project of Shanxi Province(20191102003).
文摘Oxygen reduction reaction(ORR)constitutes the core process of many energy storage and conversion devices including metal–air batteries and fuel cells.However,the kinetics of ORR is very sluggish and thus highperformance ORR electrocatalysts are highly regarded.Despite recent progress on minimizing the ORR halfwave potential as the current evaluation indicator,in-depth quantitative kinetic analysis on overall ORR electrocatalytic performance remains insufficiently emphasized.In this paper,a quantitative kinetic analysis method is proposed to afford decoupled kinetic information from linear sweep voltammetry profiles on the basis of the Koutecky–Levich equation.Independent parameters regarding exchange current density,electron transfer number,and electrochemical active surface area can be respectively determined following the proposed method.This quantitative kinetic analysis method is expected to promote understanding of the electrocatalytic effect and point out further optimization direction for ORR electrocatalysis.
基金This study was supported by the National Natural Science Foundation of China
文摘A stopped-flow reversed flow injection method for the determination of free cyanide is proposed. Pyridine-barbituric acid mixture is injected in the flow system as reagent to form the colour species with cyanide. The flow is stopped when the reagent zone comes in the flow cell, where absorbance-time data are collected at 580nm wavelength. The linear range of the determination is 0.1 -10μg/ml CN-. The sampling rate is 60h-1 and the relative standard deviation is 1.6% (n=16) at 5.0 μg/ml CN-1 level. With satisfactory results, the proposed method was applied to the determination of free cyanide in wastewater without sample pretreatment.
文摘Human Activity Recognition(HAR)has always been a difficult task to tackle.It is mainly used in security surveillance,human-computer interaction,and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things(IoT).Human Activity Recognition data can be recorded with the help of sensors,images,or smartphones.Recognizing daily routine-based human activities such as walking,standing,sitting,etc.,could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network(2D CNN)MODEL,Long Short Term Memory(LSTM)Model,Bidirectional long short-term memory(Bi-LSTM)are used for the classification.It has been demonstrated that recognizing the daily routine-based on human activities can be extremely accurate,with almost all activities accurately getting recognized over 90%of the time.Furthermore,because all the examples are generated from only 20 s of data,these actions can be recognised fast.Apart from classification,the work extended to verify and investigate the need for wearable sensing devices in individually walking patients with Cerebral Palsy(CP)for the evaluation of chosen Spatio-temporal features based on 3D foot trajectory.Case-control research was conducted with 35 persons with CP ranging in weight from 25 to 65 kg.Optical Motion Capture(OMC)equipment was used as the referral method to assess the functionality and quality of the foot-worn device.The average accuracy±precision for stride length,cadence,and step length was 3.5±4.3,4.1±3.8,and 0.6±2.7 cm respectively.For cadence,stride length,swing,and step length,people with CP had considerably high inter-stride variables.Foot-worn sensing devices made it easier to examine Gait Spatio-temporal data even without a laboratory set up with high accuracy and precision about gait abnormalities in people who have CP during linear walking.
基金Supported by National Natural Science Foundation of China(No.21207052)
文摘A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial p H value and initial water content of the soil.Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants(k values) were calculated.The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well.Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation.A higher k value could be achieved in the lower initial pyrene content(the value was 100 mg kg^-1).The k value of pyrene oxidation in the case of p H=4 was 11.2 times higher than the value obtained under the condition of p H=9,while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP.
基金the financial support provided by National Natural Science Foundation of China (Project No.51375491)the Natural Science Foundation of Chongqing (Project No.CSTC,2014JCYJAA50021)
文摘The thermal decomposition characteristics of methyl linoleate (ML) under nitrogen and oxygen atmo- spheres were investigated, using a thermogravimetric analyzer at a heating rate of 10 ~C/min from room tem- perature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of ML at different heating rates were stud- ied. The results showed that the thermal decomposition characteristics of ML under nitrogen and oxygen atmo- spheres were macroscopically similar, although ML exhibited relatively lower thermal stability under an oxy- gen atmosphere than under a nitrogen atmosphere. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature, and the rate of maximum weight loss of ML under an oxygen atmosphere were much lower than those under a nitrogen atmosphere and increased with increasing heating rates under either oxygen or nitrogen atmosphere. In addition, the kinetic characteristics of thermal decomposition of ML were elucidated based on the experimental results and by the multiple linear regression method. The activation energy, pre-exponential factor, reaction order, and the kinetic equation for thermal decomposition of ML were obtained. The comparison of experimental and calculated data and the analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for pyrolysis of ML with relative errors of about 1%. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of ML was also confirmed.
文摘The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.