In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,howeve...In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.展开更多
In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These ...In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.展开更多
Control systems designed by the principle of matching gives rise to problems of evaluating the peak output. This paper proposes a practical method for computing the peak output of linear time-invariant and non-anticip...Control systems designed by the principle of matching gives rise to problems of evaluating the peak output. This paper proposes a practical method for computing the peak output of linear time-invariant and non-anticipative systems for a class of possible sets that are characterized with many bounding conditions on the two- and/or the infinity-norms of the inputs and their derivatives. The original infinite-dimensional convex optimization problem is approximated as a large-scale convex programme defined in a Euclidean space, which are associated with sparse matrices and thus can be solved efficiently in practice. The numerical results show that the method performs satisfactorily, and that using a possible set with many bounding conditions can help to reduce the design conservatism and thereby yield a better match.展开更多
In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular functi...In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.展开更多
In this paper, we describe a method to solve large-scale structural optimization problems by sequential convex programming (SCP). A predictor-corrector interior point method is applied to solve the strictly convex s...In this paper, we describe a method to solve large-scale structural optimization problems by sequential convex programming (SCP). A predictor-corrector interior point method is applied to solve the strictly convex subproblems. The SCP algorithm and the topology optimization approach are introduced. Especially, different strategies to solve certain linear systems of equations are analyzed. Numerical results are presented to show the efficiency of the proposed method for solving topology optimization problems and to compare different variants.展开更多
基金National Natural Science Foundation of China(project number:41661091)Lanzhou Jiaotong University Excellent Platform Support Project(201806)。
文摘In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.
基金the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘In this paper, a new primal-dual interior-point algorithm for convex quadratic optimization (CQO) based on a kernel function is presented. The proposed function has some properties that are easy for checking. These properties enable us to improve the polynomial complexity bound of a large-update interior-point method (IPM) to O(√n log nlog n/e), which is the currently best known polynomial complexity bound for the algorithm with the large-update method. Numerical tests were conducted to investigate the behavior of the algorithm with different parameters p, q and θ, where p is the growth degree parameter, q is the barrier degree of the kernel function and θ is the barrier update parameter.
文摘Control systems designed by the principle of matching gives rise to problems of evaluating the peak output. This paper proposes a practical method for computing the peak output of linear time-invariant and non-anticipative systems for a class of possible sets that are characterized with many bounding conditions on the two- and/or the infinity-norms of the inputs and their derivatives. The original infinite-dimensional convex optimization problem is approximated as a large-scale convex programme defined in a Euclidean space, which are associated with sparse matrices and thus can be solved efficiently in practice. The numerical results show that the method performs satisfactorily, and that using a possible set with many bounding conditions can help to reduce the design conservatism and thereby yield a better match.
基金Supported by Natural Science Foundation of Hubei Province of China (Grant No. 2008CDZ047)
文摘In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.
基金This work was mainly done while the first author was visiting the University of Bayreuth, and was supported by the Chinese Scholarship Council, German Academic Exchange Service (DAAD) and the National Natural Science Foundation of China.
文摘In this paper, we describe a method to solve large-scale structural optimization problems by sequential convex programming (SCP). A predictor-corrector interior point method is applied to solve the strictly convex subproblems. The SCP algorithm and the topology optimization approach are introduced. Especially, different strategies to solve certain linear systems of equations are analyzed. Numerical results are presented to show the efficiency of the proposed method for solving topology optimization problems and to compare different variants.
文摘现有的面向大规模数据分类的支持向量机(support vector machine,SVM)对噪声样本敏感,针对这一问题,通过定义软性核凸包和引入pinball损失函数,提出了一种新的软性核凸包支持向量机(soft kernel convex hull support vector machine for large scale noisy datasets,SCH-SVM).SCH-SVM首先定义了软性核凸包的概念,然后选择出能代表样本在核空间几何轮廓的软性核凸包向量,再将其对应的原始空间样本作为训练样本并基于pinball损失函数来寻找两类软性核凸包之间的最大分位数距离.相关理论和实验结果亦证明了所提分类器在训练时间,抗噪能力和支持向量数上的有效性.