The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H...The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.展开更多
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo...To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
BACKGROUND Minute gastric cancers(MGCs)have a favorable prognosis,but they are too small to be detected by endoscopy,with a maximum diameter≤5 mm.AIM To explore endoscopic detection and diagnostic strategies for MGCs...BACKGROUND Minute gastric cancers(MGCs)have a favorable prognosis,but they are too small to be detected by endoscopy,with a maximum diameter≤5 mm.AIM To explore endoscopic detection and diagnostic strategies for MGCs.METHODS This was a real-world observational study.The endoscopic and clinicopathological parameters of 191 MGCs between January 2015 and December 2022 were retrospectively analyzed.Endoscopic discoverable opportunity and typical neoplastic features were emphatically reviewed.RESULTS All MGCs in our study were of a single pathological type,97.38%(186/191)of which were differentiated-type tumors.White light endoscopy(WLE)detected 84.29%(161/191)of MGCs,and the most common morphology of MGCs found by WLE was protruding.Narrow-band imaging(NBI)secondary observation detected 14.14%(27/191)of MGCs,and the most common morphology of MGCs found by NBI was flat.Another three MGCs were detected by indigo carmine third observation.If a well-demarcated border lesion exhibited a typical neoplastic color,such as yellowish-red or whitish under WLE and brownish under NBI,MGCs should be diagnosed.The proportion with high diagnostic confidence by magnifying endoscopy with NBI(ME-NBI)was significantly higher than the proportion with low diagnostic confidence and the only visible groups(94.19%>56.92%>32.50%,P<0.001).CONCLUSION WLE combined with NBI and indigo carmine are helpful for detection of MGCs.A clear demarcation line combined with a typical neoplastic color using nonmagnifying observation is sufficient for diagnosis of MGCs.MENBI improves the endoscopic diagnostic confidence of MGCs.展开更多
This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to differe...This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to different bitter stimuli with extreme high sensitivity and speci-ficity.TRCs were isolated from the taste buds of rats and cultured on the surface of LAPS chip.Due to the unique advantages such as single-cell recording,light addressable capability,and noninvasiveness,LAPS chip was used as secondary transducer to monitor the responses of TRCs by recording extracelluar potential changes.The results indicate LAPS chip can effectively record the responses of TRCs to different bitter substances used in this study in a real-time manner for a long-term.In addition,by performing principal component analysis on the LAPS recording data,different bitter substances tested can be successfully discriminated.It is suggested this TRCsLAPS hybrid biosensor could be a valuable tool for bitter substance detection.With further improvement and novel design,it has great potentials to be applied in both basic research and practical applications related to bitter taste detection.展开更多
Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they...Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they can well solve many technical problems that cannot be done by conventional cameras. An important feature of light field cameras is that a microlens array is inserted between the sensor and main lens, through which a series of sub-aperture images of different perspectives are formed. Based on this feature and the full-focus image acquisition technique, we propose a light-field optical flow calculation algorithm, which involves both the depth estimation and the occlusion detection and guarantees the edge-preserving property. This algorithm consists of three steps: 1) Computing the dense optical flow field among a group of sub-aperture images;2) Obtaining a robust depth-estimation by initializing the light-filed optical flow using the linear regression approach and detecting occluded areas using the consistency;3) Computing an improved light-field depth map by using the edge-preserving algorithm to realize interpolation optimization. The reliability and high accuracy of the proposed approach is validated by experimental results.展开更多
BACKGROUND Liver transplantation has evolved into a safe life-saving operation and remains the golden standard in the treatment of end stage liver disease.The main limiting factor in the application of liver transplan...BACKGROUND Liver transplantation has evolved into a safe life-saving operation and remains the golden standard in the treatment of end stage liver disease.The main limiting factor in the application of liver transplantation is graft shortage.Many strategies have been developed in order to alleviate graft shortage,such as living donor partial liver transplantation and split liver transplantation for adult and pediatric patients.In these strategies,liver volume assessment is of paramount importance,as size mismatch can have severe consequences in the success of liver transplantation.AIM To evaluate the safety,feasibility,and accuracy of light detection and ranging(LIDAR)3D photography in the prediction of whole liver graft volume and mass.METHODS Seven liver grafts procured for orthotopic liver transplantation from brain deceased donors were prospectively measured with an LIDAR handheld camera and their mass was calculated and compared to their actual weight.RESULTS The mean error of all measurements was 17.03 g(range 3.56-59.33 g).Statistical analysis of the data yielded a Pearson correlation coefficient index of 0.9968,indicating a strong correlation between the values and a Student’s t-test P value of 0.26.Mean accuracy of the measurements was calculated at 97.88%.CONCLUSION Our preliminary data indicate that LIDAR scanning of liver grafts is a safe,cost-effective,and feasible method of ex vivo determination of whole liver volume and mass.More data are needed to determine the precision and accuracy of this method.展开更多
We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost image...We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.展开更多
Purpose: This study compared the effects of pupil variation on light detection and temporal modulation across the central visual field.Methods:Light detection sensitivity (LDS) and low flickering frequency (6Hz) tempo...Purpose: This study compared the effects of pupil variation on light detection and temporal modulation across the central visual field.Methods:Light detection sensitivity (LDS) and low flickering frequency (6Hz) temporal modulation sensitivity (TMS) of 20 young subjects were measured from the central visual field of the right eyes using an automated perimeter (Medmont M600). The measurements were taken under 3 artificial pupils, I.e. 3 mm, 4.3 mm and 6 mm diameters.The sensitivities were grouped and averaged for different retinal eccentricities(3°, 6°, 10° and 15°).Results:TMS and LDS were reduced with increasing retinal eccentricities( P < 0.001)and decreasing pupil diameters( P < 0.001). TMS collected from all pupil diameters were significantly different from each other( P < 0.001). Similarly, LDS under 3 mm pupil was statistically different from those of 4.3 mm and 6 mm(P < 0.003). Comparison of the hills of vision showed that pupil variation resulted in significantly different slopes (P=0.001).The slopes were also found to be significantly different between TMS and LDS (P=0.012).Conclusions: The data showed that dilated pupil resulted in significantly higher sensitivities than those of smaller pupil for both visual functions. The difference in the slopes of hills of vision also suggested that the variation in retinal illumination affected the visual responses differently at various retinal eccentricitities for TMS and LDS.展开更多
The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband ...The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.展开更多
In order to solve the problems of the traditional flame detection method, such as low detection accuracy, slow detection speed and lack of real-time detection ability. An improved high speed flame detection method bas...In order to solve the problems of the traditional flame detection method, such as low detection accuracy, slow detection speed and lack of real-time detection ability. An improved high speed flame detection method based on YOLOv7 is proposed. Based on YOLOv7 and combined with ConvNeXtBlock, CN-B network module was constructed, and YOLOv7-CN-B flame detection method was proposed. Compared with the YOLOv7 method, this flame detection method is lighter and has stronger flame feature extraction ability. 2059 open flame data sets labeled with single flame categories were used to avoid the enhancement effect brought by high-quality data sets, so that the comparative experimental effect completely depended on the performance of the flame detection method itself. The results show that the accuracy of YOLOv7-CN-B method is improved by 5% and mAP is improved by 2.1% compared with YOLOv7 method. The detection speed reached 149.25 FPS, and the single detection speed reached 11.9 ms. The experimental results show that the YOLOv7-CN-B method has better performance than the mainstream algorithm.展开更多
In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vec...In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vector machine(SVM)and region sub-block matching is proposed.Firstly,the original image is segmented into several superpixels,and these superpixels are clustered using mean-shift clustering algorithm in the superpixel sets.Secondly,these features such as color,texture,brightness,intensity and similarity of each area are extracted.These features are used as input of SVM to obtain shadow binary images through training in non-operational state.Thirdly,soft matting is used to smooth the boundary of shadow binary graph.Finally,after finding the best matching sub-block for shadow sub-block in the illumination region based on regional covariance feature and spatial distance,the shadow weighted average factor is introduced to partially correct the sub-block,and the light recovery operator is used to partially light the sub-block.The experimental results show the number of false detection of the pixels is reduced.In addition,it can remove shadows effectively for the image with rich textures and uneven shadows and make a natural transition at the boundary between shadow and light.展开更多
Resonance light scattering (RLS) is a sensitive technique for monitoring scattered light induced by extended aggregates of chromophores. It has been widely used to study aggregations for its simple manipulation, high ...Resonance light scattering (RLS) is a sensitive technique for monitoring scattered light induced by extended aggregates of chromophores. It has been widely used to study aggregations for its simple manipulation, high sensitivity and great versatility. Gold nanoparticles generate colorful light-scattering signals due to their unique surface plasmon resonances, hence extraordinary light scattering upon aggregation. In this paper we report a rapid and sensitive method based on gold nanoparticles and DNA aptamer to detect protein biomarkers by RLS. Thiol modified thrombin aptamer was covalently assembled to the surface of gold nanoparticles as nanobio probes. As thrombin has two specific binding sites for its aptamer, it can bridge the well dispersed nanoparticles and lead to a network of particle aggregations. The formation of aggregation ia measured by RLS, and the specific detection of thrombin at nM level is achieved. The method has good specificity.展开更多
We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polar...We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.展开更多
Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network...Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network.On the other hand,these advantages create a more vulnerable environment with substantial risks,culminating in network difficulties,system paralysis,online banking frauds,and robberies.These issues have a significant detrimental impact on organizations,enterprises,and even economies.Accuracy,high performance,and real-time systems are necessary to achieve this goal.Using a SDN to extend intelligent machine learning methodologies in an Intrusion Detection System(IDS)has stimulated the interest of numerous research investigators over the last decade.In this paper,a novel HFS-LGBM IDS is proposed for SDN.First,the Hybrid Feature Selection algorithm consisting of two phases is applied to reduce the data dimension and to obtain an optimal feature subset.In thefirst phase,the Correlation based Feature Selection(CFS)algorithm is used to obtain the feature subset.The optimal feature set is obtained by applying the Random Forest Recursive Feature Elimination(RF-RFE)in the second phase.A LightGBM algorithm is then used to detect and classify different types of attacks.The experimental results based on NSL-KDD dataset show that the proposed system produces outstanding results compared to the existing methods in terms of accuracy,precision,recall and f-measure.展开更多
The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is el...The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is elaborated.The detection of the profile line and integration of the sequential cross-sectional pilled image are discussed.The threshold based on Gaussian model is recommended for pill segmentation.The results show that the installed system is capable of eliminating the interference with pill information from the fabric color and pattern.展开更多
Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-maki...Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-making. With the long-term Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS) nighttime light images, a pixel level assessment of urbanization of China from 1992 to 2013 was conducted in this study, and the spatio-temporal dynamics and future trends of urban development were fully detected. The results showed that the urbanization and urban dynamics of China experienced drastic fluctuations from 1992 to 2013, especially for those in the coastal and metropolitan areas. From a regional perspective, it was found that the urban dynamics and increasing trends in North Coast China, East Coast China and South Coast China were much more stable and significant than that in other regions. Moreover, with the sustainability estimating of nighttime light dynamics, the regional agglomeration trends of urban regions were also detected. The light intensity in nearly 50% of lighted pixels may continuously decrease in the future, indicating a severe situation of urbanization within these regions. In this study, The results revealed in this study can provided a new insight in long time urbanization detecting and is thus beneficial to the better understanding of trends and dynamics of urban development.展开更多
We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, t...We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, the size of the source is minimized, and the quantum correlations over 6 d B can be directly provided by the entangled source. The compact and stable entangled light source is suitable for practical applications in quantum information science and technology. The presented protocol provides a useful reference for manufacturing products of bright entangled light sources.展开更多
基金funded by the National Key R&D Program of China(2020YFB1710100)the National Natural Science Foundation of China(Nos.52275337,52090042,51905188).
文摘The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Higher Education of Ministry of Education (No.705020)
文摘To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
基金Supported by the National Science Foundation Committee of China,No 81372348and Clinical Research Fund Project of Zhejiang Medical Association,No 2020ZYC-A10.
文摘BACKGROUND Minute gastric cancers(MGCs)have a favorable prognosis,but they are too small to be detected by endoscopy,with a maximum diameter≤5 mm.AIM To explore endoscopic detection and diagnostic strategies for MGCs.METHODS This was a real-world observational study.The endoscopic and clinicopathological parameters of 191 MGCs between January 2015 and December 2022 were retrospectively analyzed.Endoscopic discoverable opportunity and typical neoplastic features were emphatically reviewed.RESULTS All MGCs in our study were of a single pathological type,97.38%(186/191)of which were differentiated-type tumors.White light endoscopy(WLE)detected 84.29%(161/191)of MGCs,and the most common morphology of MGCs found by WLE was protruding.Narrow-band imaging(NBI)secondary observation detected 14.14%(27/191)of MGCs,and the most common morphology of MGCs found by NBI was flat.Another three MGCs were detected by indigo carmine third observation.If a well-demarcated border lesion exhibited a typical neoplastic color,such as yellowish-red or whitish under WLE and brownish under NBI,MGCs should be diagnosed.The proportion with high diagnostic confidence by magnifying endoscopy with NBI(ME-NBI)was significantly higher than the proportion with low diagnostic confidence and the only visible groups(94.19%>56.92%>32.50%,P<0.001).CONCLUSION WLE combined with NBI and indigo carmine are helpful for detection of MGCs.A clear demarcation line combined with a typical neoplastic color using nonmagnifying observation is sufficient for diagnosis of MGCs.MENBI improves the endoscopic diagnostic confidence of MGCs.
基金This work was supported by the grants from the National Natural Science Foundation of China(Grant Nos.60725102,31000448)the China Postdoctoral Science Foundation(Grant Nos.20100471737,201104734)the Key Project of Zhejiang Province(Grant No.2010C14006).
文摘This paper presents a novel biosensor for bitter substance detection on the basis of light addressable potentiometric sensor(LAPS).Taste receptor cells(TRCs)were used as sensitive elements,which can respond to different bitter stimuli with extreme high sensitivity and speci-ficity.TRCs were isolated from the taste buds of rats and cultured on the surface of LAPS chip.Due to the unique advantages such as single-cell recording,light addressable capability,and noninvasiveness,LAPS chip was used as secondary transducer to monitor the responses of TRCs by recording extracelluar potential changes.The results indicate LAPS chip can effectively record the responses of TRCs to different bitter substances used in this study in a real-time manner for a long-term.In addition,by performing principal component analysis on the LAPS recording data,different bitter substances tested can be successfully discriminated.It is suggested this TRCsLAPS hybrid biosensor could be a valuable tool for bitter substance detection.With further improvement and novel design,it has great potentials to be applied in both basic research and practical applications related to bitter taste detection.
文摘Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they can well solve many technical problems that cannot be done by conventional cameras. An important feature of light field cameras is that a microlens array is inserted between the sensor and main lens, through which a series of sub-aperture images of different perspectives are formed. Based on this feature and the full-focus image acquisition technique, we propose a light-field optical flow calculation algorithm, which involves both the depth estimation and the occlusion detection and guarantees the edge-preserving property. This algorithm consists of three steps: 1) Computing the dense optical flow field among a group of sub-aperture images;2) Obtaining a robust depth-estimation by initializing the light-filed optical flow using the linear regression approach and detecting occluded areas using the consistency;3) Computing an improved light-field depth map by using the edge-preserving algorithm to realize interpolation optimization. The reliability and high accuracy of the proposed approach is validated by experimental results.
基金the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,No.T1EDK-03599.
文摘BACKGROUND Liver transplantation has evolved into a safe life-saving operation and remains the golden standard in the treatment of end stage liver disease.The main limiting factor in the application of liver transplantation is graft shortage.Many strategies have been developed in order to alleviate graft shortage,such as living donor partial liver transplantation and split liver transplantation for adult and pediatric patients.In these strategies,liver volume assessment is of paramount importance,as size mismatch can have severe consequences in the success of liver transplantation.AIM To evaluate the safety,feasibility,and accuracy of light detection and ranging(LIDAR)3D photography in the prediction of whole liver graft volume and mass.METHODS Seven liver grafts procured for orthotopic liver transplantation from brain deceased donors were prospectively measured with an LIDAR handheld camera and their mass was calculated and compared to their actual weight.RESULTS The mean error of all measurements was 17.03 g(range 3.56-59.33 g).Statistical analysis of the data yielded a Pearson correlation coefficient index of 0.9968,indicating a strong correlation between the values and a Student’s t-test P value of 0.26.Mean accuracy of the measurements was calculated at 97.88%.CONCLUSION Our preliminary data indicate that LIDAR scanning of liver grafts is a safe,cost-effective,and feasible method of ex vivo determination of whole liver volume and mass.More data are needed to determine the precision and accuracy of this method.
基金Supported by the Beijing Natural Science Foundation under Grant No 4133086the Fundamental Research Funds for th Central Universities under Grant No 2-9-2014-022
文摘We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.
文摘Purpose: This study compared the effects of pupil variation on light detection and temporal modulation across the central visual field.Methods:Light detection sensitivity (LDS) and low flickering frequency (6Hz) temporal modulation sensitivity (TMS) of 20 young subjects were measured from the central visual field of the right eyes using an automated perimeter (Medmont M600). The measurements were taken under 3 artificial pupils, I.e. 3 mm, 4.3 mm and 6 mm diameters.The sensitivities were grouped and averaged for different retinal eccentricities(3°, 6°, 10° and 15°).Results:TMS and LDS were reduced with increasing retinal eccentricities( P < 0.001)and decreasing pupil diameters( P < 0.001). TMS collected from all pupil diameters were significantly different from each other( P < 0.001). Similarly, LDS under 3 mm pupil was statistically different from those of 4.3 mm and 6 mm(P < 0.003). Comparison of the hills of vision showed that pupil variation resulted in significantly different slopes (P=0.001).The slopes were also found to be significantly different between TMS and LDS (P=0.012).Conclusions: The data showed that dilated pupil resulted in significantly higher sensitivities than those of smaller pupil for both visual functions. The difference in the slopes of hills of vision also suggested that the variation in retinal illumination affected the visual responses differently at various retinal eccentricitities for TMS and LDS.
文摘The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.
文摘In order to solve the problems of the traditional flame detection method, such as low detection accuracy, slow detection speed and lack of real-time detection ability. An improved high speed flame detection method based on YOLOv7 is proposed. Based on YOLOv7 and combined with ConvNeXtBlock, CN-B network module was constructed, and YOLOv7-CN-B flame detection method was proposed. Compared with the YOLOv7 method, this flame detection method is lighter and has stronger flame feature extraction ability. 2059 open flame data sets labeled with single flame categories were used to avoid the enhancement effect brought by high-quality data sets, so that the comparative experimental effect completely depended on the performance of the flame detection method itself. The results show that the accuracy of YOLOv7-CN-B method is improved by 5% and mAP is improved by 2.1% compared with YOLOv7 method. The detection speed reached 149.25 FPS, and the single detection speed reached 11.9 ms. The experimental results show that the YOLOv7-CN-B method has better performance than the mainstream algorithm.
基金University and College Scientific Research Fund of Gansu Province(No.2017A-026)Foundation of A hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘In case of complex textures,existing static shadow detection and removal algorithms are prone to false detection of the pixels.To solve this problem,a static shadow detection and removal algorithm based on support vector machine(SVM)and region sub-block matching is proposed.Firstly,the original image is segmented into several superpixels,and these superpixels are clustered using mean-shift clustering algorithm in the superpixel sets.Secondly,these features such as color,texture,brightness,intensity and similarity of each area are extracted.These features are used as input of SVM to obtain shadow binary images through training in non-operational state.Thirdly,soft matting is used to smooth the boundary of shadow binary graph.Finally,after finding the best matching sub-block for shadow sub-block in the illumination region based on regional covariance feature and spatial distance,the shadow weighted average factor is introduced to partially correct the sub-block,and the light recovery operator is used to partially light the sub-block.The experimental results show the number of false detection of the pixels is reduced.In addition,it can remove shadows effectively for the image with rich textures and uneven shadows and make a natural transition at the boundary between shadow and light.
基金Supported by Ministry of Health(2009ZX10004-301)Shanghai Municipal Science and Technology Commission(0952nm04600)
文摘Resonance light scattering (RLS) is a sensitive technique for monitoring scattered light induced by extended aggregates of chromophores. It has been widely used to study aggregations for its simple manipulation, high sensitivity and great versatility. Gold nanoparticles generate colorful light-scattering signals due to their unique surface plasmon resonances, hence extraordinary light scattering upon aggregation. In this paper we report a rapid and sensitive method based on gold nanoparticles and DNA aptamer to detect protein biomarkers by RLS. Thiol modified thrombin aptamer was covalently assembled to the surface of gold nanoparticles as nanobio probes. As thrombin has two specific binding sites for its aptamer, it can bridge the well dispersed nanoparticles and lead to a network of particle aggregations. The formation of aggregation ia measured by RLS, and the specific detection of thrombin at nM level is achieved. The method has good specificity.
基金Supported by the National Natural Science Foundation of China under Grant No 11404142the Youth Teacher Foundation of Huaiyin Institute of Technology under Grant No 2717577
文摘We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.
文摘Software Defined Networking(SDN)has emerged as a promising and exciting option for the future growth of the internet.SDN has increased the flexibility and transparency of the managed,centralized,and controlled network.On the other hand,these advantages create a more vulnerable environment with substantial risks,culminating in network difficulties,system paralysis,online banking frauds,and robberies.These issues have a significant detrimental impact on organizations,enterprises,and even economies.Accuracy,high performance,and real-time systems are necessary to achieve this goal.Using a SDN to extend intelligent machine learning methodologies in an Intrusion Detection System(IDS)has stimulated the interest of numerous research investigators over the last decade.In this paper,a novel HFS-LGBM IDS is proposed for SDN.First,the Hybrid Feature Selection algorithm consisting of two phases is applied to reduce the data dimension and to obtain an optimal feature subset.In thefirst phase,the Correlation based Feature Selection(CFS)algorithm is used to obtain the feature subset.The optimal feature set is obtained by applying the Random Forest Recursive Feature Elimination(RF-RFE)in the second phase.A LightGBM algorithm is then used to detect and classify different types of attacks.The experimental results based on NSL-KDD dataset show that the proposed system produces outstanding results compared to the existing methods in terms of accuracy,precision,recall and f-measure.
基金This research was supported by the Research Fund for Etoctoral Program of Higher Education (No. 99025508)
文摘The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is elaborated.The detection of the profile line and integration of the sequential cross-sectional pilled image are discussed.The threshold based on Gaussian model is recommended for pill segmentation.The results show that the installed system is capable of eliminating the interference with pill information from the fabric color and pattern.
基金Under the auspices of State Scholarship Fund of China Scholarship Council(No.201706320300)。
文摘Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-making. With the long-term Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS) nighttime light images, a pixel level assessment of urbanization of China from 1992 to 2013 was conducted in this study, and the spatio-temporal dynamics and future trends of urban development were fully detected. The results showed that the urbanization and urban dynamics of China experienced drastic fluctuations from 1992 to 2013, especially for those in the coastal and metropolitan areas. From a regional perspective, it was found that the urban dynamics and increasing trends in North Coast China, East Coast China and South Coast China were much more stable and significant than that in other regions. Moreover, with the sustainability estimating of nighttime light dynamics, the regional agglomeration trends of urban regions were also detected. The light intensity in nearly 50% of lighted pixels may continuously decrease in the future, indicating a severe situation of urbanization within these regions. In this study, The results revealed in this study can provided a new insight in long time urbanization detecting and is thus beneficial to the better understanding of trends and dynamics of urban development.
基金supported by the National Natural Science Foundation of China(Grant No.61227015)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China
文摘We present a stable entangled light source that integrates the pump laser, entanglement generator, detectors, and electronic control systems. By optimizing the design of the mechanical elements and the optical path, the size of the source is minimized, and the quantum correlations over 6 d B can be directly provided by the entangled source. The compact and stable entangled light source is suitable for practical applications in quantum information science and technology. The presented protocol provides a useful reference for manufacturing products of bright entangled light sources.