Objective: The content of saikosaponins in genus Bupleurum is increased with numbers of lateral root, but the genetic mechanisms are largely unknown. This study aims to identify the heme oxygenase(HO) gene family memb...Objective: The content of saikosaponins in genus Bupleurum is increased with numbers of lateral root, but the genetic mechanisms are largely unknown. This study aims to identify the heme oxygenase(HO) gene family members of B. chinense and B. scorzonerifolium, and assess their role in the root development in Bupleurum.Methods: The gene sequences of HO family were selected from iso-seq full-length transcriptome data of B. chinense and B. scorzonerifolium, and were analyzed in physicochemical properties, conserved domains,motifs and phylogenetic relationship. In addition, the expression patterns of HO gene in different parts of roots were compared via transcriptome sequencing and qRT-PCR in the two species.Results: Five Bupleurum HO genes(BcHO1-BcHO5) belonging to the HO1 subfamily were identified from the transcriptome data, whereas the HO_(2) subfamily member was not identified. The expression levels of BcHO1 and BcHO_(2) were significantly higher than those of other three HO members in the transcriptome analysis. In addition, the expression profile of BcHO1 showed consistency with lateral root development in B. chinense and B. scorzonerifolium.Conclusion: Hos might participate in the auxin-induced morphogenesis of lateral roots. The yield of saikosaponin may be improved by manipulating expression of these genes.展开更多
Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branc...Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repres- sive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis.展开更多
基金financially supported by China Agriculture Research System of MOF and MARA,the CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2016-I2M-2-003)Opening Project Fund of Key Laboratory of Rubber Biology and Genetic Resource Utilization,Ministry of Agriculture/State Key Laboratory Breeding Base of Cultivation&Physiology for Tropical Crops/Danzhou Investigation&Experiment Station of Tropical Crops,Ministry of Agriculture(No.RRL-KLOF202201)。
文摘Objective: The content of saikosaponins in genus Bupleurum is increased with numbers of lateral root, but the genetic mechanisms are largely unknown. This study aims to identify the heme oxygenase(HO) gene family members of B. chinense and B. scorzonerifolium, and assess their role in the root development in Bupleurum.Methods: The gene sequences of HO family were selected from iso-seq full-length transcriptome data of B. chinense and B. scorzonerifolium, and were analyzed in physicochemical properties, conserved domains,motifs and phylogenetic relationship. In addition, the expression patterns of HO gene in different parts of roots were compared via transcriptome sequencing and qRT-PCR in the two species.Results: Five Bupleurum HO genes(BcHO1-BcHO5) belonging to the HO1 subfamily were identified from the transcriptome data, whereas the HO_(2) subfamily member was not identified. The expression levels of BcHO1 and BcHO_(2) were significantly higher than those of other three HO members in the transcriptome analysis. In addition, the expression profile of BcHO1 showed consistency with lateral root development in B. chinense and B. scorzonerifolium.Conclusion: Hos might participate in the auxin-induced morphogenesis of lateral roots. The yield of saikosaponin may be improved by manipulating expression of these genes.
文摘Root branching or lateral root formation is crucial to maximize a root system acquiring nutrients and water from soil. A lateral root (LR) arises from asymmetric cell division of founder cells (FCs) in a pre-branch site of the primary root, and FC establishment is essential for lateral root formation. FCs are known to be specified from xylem pole pericycle cells, but the molecular genetic mechanisms underlying FC establishment are unclear. Here, we report that, in Arabidopsis thaliana, a PRC2 (for Polycomb repressive complex 2) histone H3 lysine-27 (H3K27) methyltransferase complex, functions to inhibit FC establishment during LR initiation. We found that functional loss of the PRC2 subunits EMF2 (for EMBRYONIC FLOWER 2) or CLF (for CURLY LEAF) leads to a great increase in the number of LRs formed in the primary root. The CLF H3K27 methyltransferase binds to chromatin of the auxin efflux carrier gene PIN FORMED 1 (PIN1), deposits the repres- sive mark H3K27me3 to repress its expression, and functions to down-regulate auxin maxima in root tissues and inhibit FC establishment. Our findings collectively suggest that EMF2-CLF PRC2 acts to down-regulate root auxin maxima and show that this complex represses LR formation in Arabidopsis.