期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeled response of talik development under thermokarst lakes to permafrost thickness on the Qinghai-Tibet Plateau 被引量:3
1
作者 Feng Ling QingBai Wu +1 位作者 FuJun Niu TingJun Zhang 《Research in Cold and Arid Regions》 CSCD 2014年第6期521-530,共10页
Permafrost thickness under identical climates in cold regions can vary significantly because it is severely affected by climate change, topography, soil physical and thermal properties, and geothermal conditions. This... Permafrost thickness under identical climates in cold regions can vary significantly because it is severely affected by climate change, topography, soil physical and thermal properties, and geothermal conditions. This study numerically in- vestigates the response of ground thermal regime and talik development processes to permafrost with different thicknesses under a thermokarst lake on the Qinghai-Tibet Plateau. On the basis of observed data and information from a representative monitored lake in the Beiluhe Basin, we used a heat transfer model with phase change under a cylindrical coordinate system to conduct three simulation cases with permafrost thicknesses of 45 m, 60 m, and 75 m, respectively. The simulated results indicate that increases in permafrost thickness not only strongly retarded the open talik formation time, but also delayed the permafrost lateral thaw process after the formation of open talik. Increasing the permafrost thickness by 33.3% and 66.7% led to open talik formation time increases of 83.66% and 207.43%, respectively, and resulted in increases in the lateral thaw duration of permafrost under the modeled thermokarst lake by 28.86% and 46.54%, respectively, after the formation of the open taliks. 展开更多
关键词 permafrost thickness thermokarst lakes talik development lateral thaw modeling
下载PDF
Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains 被引量:4
2
作者 Wen SUN Tingjun ZHANG +6 位作者 Gary D.CLOW Yan-Hua SUN Wen-Yu ZHAO Ben-Ben LIANG Cheng-Yan FAN Xiao-Qing PENG Bin CAO 《Advances in Climate Change Research》 SCIE CSCD 2022年第5期642-650,共9页
Permafrost degradation has been widely reported on the Tibetan Plateau(TP).However,directly observed evidence of permafrost thawing processes and degradation rates are very limited,although it is expected to be preval... Permafrost degradation has been widely reported on the Tibetan Plateau(TP).However,directly observed evidence of permafrost thawing processes and degradation rates are very limited,although it is expected to be prevalent near the periphery of a permafrost area.Here,we report permafrost changes and disappearance in the Qilian Mountains(northeastern TP)based on three boreholes instrumented along a 100 m transect during 2014–2021.Our results show that permafrost has significantly degraded in the study area:the mean downward thawing rate from the permafrost table was about 0.16 m per year while the mean upward thawing rate from the permafrost base was about 0.23 m per year.We estimate the mean lateral degradation rate of permafrost in this area was∼4.14 m per year.More dramatically,the 1.5 m thick permafrost layer at one of the boreholes thawed completely between April of 2018 and December of 2019.Our results indicate that changes in climatic condition may have played only a limited role in controlling the active layer thickness in the vicinity of the altitudinal limit of permafrost;moisture content and soil conditions play key roles in site-specific permafrost thawing.This study provides new quantitative insights for understanding changes near the altitudinal limit of permafrost,and we suggest that land surface models or Earth system model studies of the lateral heat exchanges should be implemented in order to better represent permafrost thawing processes. 展开更多
关键词 PERMAFROST Permafrost degradation Permafrost lateral thawing Qilian Mountains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部