Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state...The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state. The calculation results indicate that the motion of the droplet on the cylinder can be divided into three stages: spreading, sliding, and aggregating.The contact length and contact time of a droplet on a cylindrical surface can be affected by factors such as the wettability gradient of the cylindrical wall, the Bond number, and droplet size. Furthermore, phase diagrams showing the relationship between Bond number, cylinder wall wettability gradient, and contact time as well as maximum contact length for three different droplet sizes are given. A theoretical foundation for additional research into the heat and mass transfer process between the droplet and the cylinder can be established by comprehending the variable rules of maximum contact length and contact time.展开更多
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium...With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical per...Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy.展开更多
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su...A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel.展开更多
An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D...An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.展开更多
This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0....This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0.71)and heated from below,with a hot portion of length L=0.8 H,by imposing a sinusoidal temperature.The unheated segments of the bottom wall are treated as adiabatic,and one of the vertical walls features a cold region,while the remaining walls remain adiabatic.The outcomes of the two-dimensional(2D)problem are depicted through isotherms,streamlines,the temperature evolution within the enclosure,and the Nusselt number.These visualizations span various amplitude values“a”in the interval[0.2,0.8],and of the period T0 for Ra=107.The amplitude and period effect on the results is evaluated and discussed.The amplitude of the temperature at the heart of the enclosure increases with the increase in amplitude.This also increases with the period(T0)of the imposed temperature,something that is not observable on the global Nusselt number.展开更多
A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)...The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.展开更多
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ...The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.展开更多
The standard lattice Boltzmann method utilizes uniform grids to maintain a compact computational procedure. However, it is often less efficient to perform hydrodynamic and aerodynamic flow simulations when there is a ...The standard lattice Boltzmann method utilizes uniform grids to maintain a compact computational procedure. However, it is often less efficient to perform hydrodynamic and aerodynamic flow simulations when there is a need for high resolution. To resolve these difficulties, a multiple nested lattice Boltzmann method(MNLBM) was developed, which contains several overlapped layers with different resolutions in the computational domain. The data transference of flow field on two layers is accomplished by a Filippova procedure which is proved to satisfy the continuity of mass, momentum, and stresses across the interface. The proposed method is based on the standard lattice Boltzmann method, so it is easily performed.By numerical investigation, the result of present method has been agreed with that of literature, but the computation efficiency is higher than the standard lattice Boltzmann method.展开更多
The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanopa...The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.展开更多
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improv...By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.展开更多
The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock...The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation.展开更多
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
The upper limit of the solid scatters density ns (x), a key parameter for the simulation of flows in porous media with a gray Lattice Boltzmann Method, is studied by an analytical way for the infiltration Poiseuille...The upper limit of the solid scatters density ns (x), a key parameter for the simulation of flows in porous media with a gray Lattice Boltzmann Method, is studied by an analytical way for the infiltration Poiseuille flow between two infinite parallel plates. Analyses of three different gray Lattice Boltzmann schemes, separately proposed by Gao and Sharma et al., Dardis and McCloskey, and Thorne and Sukop, indicate that the effective domain of Gao and Sharma's scheme is restricted to ns 〈 1/2√3≈0.289, Dardis and McCloskey's scheme is restricted to ns 〈 (√57-1)/28≈0.234, and that there is no extra restriction on ns(x) with Thorne and Sukop's scheme. These results are obtained for the dimensionless relaxation time τ= 1. The above analytical results are verified by our numerical simulations. The use of a gray LBM is further illustrated by simulating the flow at the interface of a porous medium. Simulation results yield velocity profiles which agree very well with Brinkman's prediction.展开更多
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng–Robinson equation of state. The calculation results indicate that the motion of the droplet on the cylinder can be divided into three stages: spreading, sliding, and aggregating.The contact length and contact time of a droplet on a cylindrical surface can be affected by factors such as the wettability gradient of the cylindrical wall, the Bond number, and droplet size. Furthermore, phase diagrams showing the relationship between Bond number, cylinder wall wettability gradient, and contact time as well as maximum contact length for three different droplet sizes are given. A theoretical foundation for additional research into the heat and mass transfer process between the droplet and the cylinder can be established by comprehending the variable rules of maximum contact length and contact time.
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
基金supported by the Hebei Province Graduate Innovation Funding Project(CXZZBS2022029).
文摘With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
基金the National Natural Science Foundation of China(Nos.12172017 and 12202021)。
文摘Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51775077)。
文摘A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel.
基金the Youth Program of the National Natural Science Foundation of China(Grant Nos.11972272,12072246,and 12202331)the National Key Project,China(Grant No.GJXM92579)the Natural Science Basic Research Program of Shaanxi Province,China(Program No.2022JQ-028)。
文摘An additional potential energy distribution function is introduced on the basis of previous D3Q25 model,and the equilibrium distribution function of D3Q25 is obtained by spherical function.A novel three-dimensional(3D)shifted lattice model is proposed,therefore a shifted lattice model is introduced into D3Q25.Under the finite volume scheme,several typical compressible calculation examples are used to verify whether the numerical stability of the D3Q25 model can be improved by adding the shifted lattice model.The simulation results show that the numerical stability is indeed improved after adding the shifted lattice model.
文摘This work presents a simulation of the phenomena of natural convection in an enclosure with a variable heating regime by the lattice Boltzmann method(LBM).We consider a square enclosure of side H filled with air(Pr=0.71)and heated from below,with a hot portion of length L=0.8 H,by imposing a sinusoidal temperature.The unheated segments of the bottom wall are treated as adiabatic,and one of the vertical walls features a cold region,while the remaining walls remain adiabatic.The outcomes of the two-dimensional(2D)problem are depicted through isotherms,streamlines,the temperature evolution within the enclosure,and the Nusselt number.These visualizations span various amplitude values“a”in the interval[0.2,0.8],and of the period T0 for Ra=107.The amplitude and period effect on the results is evaluated and discussed.The amplitude of the temperature at the heart of the enclosure increases with the increase in amplitude.This also increases with the period(T0)of the imposed temperature,something that is not observable on the global Nusselt number.
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
基金Supported by the Aeronautical Science Foundation of China(20111453012)the National Defense Pre-Research Foundation of China(9140A13040111HK0329)~~
文摘The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.
基金Supported by the Aeronautical Science Foundation of China(20061453020)Foundation for Basic Research of Northwestern Polytechnical University(03)~~
文摘The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence.
文摘The standard lattice Boltzmann method utilizes uniform grids to maintain a compact computational procedure. However, it is often less efficient to perform hydrodynamic and aerodynamic flow simulations when there is a need for high resolution. To resolve these difficulties, a multiple nested lattice Boltzmann method(MNLBM) was developed, which contains several overlapped layers with different resolutions in the computational domain. The data transference of flow field on two layers is accomplished by a Filippova procedure which is proved to satisfy the continuity of mass, momentum, and stresses across the interface. The proposed method is based on the standard lattice Boltzmann method, so it is easily performed.By numerical investigation, the result of present method has been agreed with that of literature, but the computation efficiency is higher than the standard lattice Boltzmann method.
文摘The lattice Boltzmann method (LBM) is used to examine free convection of nanofluids. The space between the cold outer square and heated inner circular cylinders is filled with water including various kinds of nanoparticles: TiO2, Ag, Cu, and A1203. The Brinkman and Maxwell-Garnetts models are used to simulate the viscosity and the effective thermal conductivity of nanofluids, respectively. Results from the performed numerical analysis show good agreement with those obtained from other numerical meth- ods. A variety of the Rayleigh number, the nanoparticle volume fraction, and the aspect ratio are examined. According to the results, choosing copper as the nanoparticle leads to obtaining the highest enhancement for this problem. The results also indicate that the maximum value of enhancement occurs at λ =2.5 when Ra = 106 while at A = 1.5 for other Rayleigh numbers.
基金Project supported by the National Natural Science Foundation of China (Grant No 70271069).
文摘By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
基金sponsored by the project No.50404001 from the National Natural Science Foundation of Chinathe National Key Fundamental Research & Development Project(Grant No.2007CB209601)+1 种基金the China National PetroleumCorporation Fundamental Research Program (Grant No.06A30102)the China Postdoctoral Science Foundation(Project No.2004035350)
文摘The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation.
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
基金the National Natural Science Foundation of China(10772097)
文摘The upper limit of the solid scatters density ns (x), a key parameter for the simulation of flows in porous media with a gray Lattice Boltzmann Method, is studied by an analytical way for the infiltration Poiseuille flow between two infinite parallel plates. Analyses of three different gray Lattice Boltzmann schemes, separately proposed by Gao and Sharma et al., Dardis and McCloskey, and Thorne and Sukop, indicate that the effective domain of Gao and Sharma's scheme is restricted to ns 〈 1/2√3≈0.289, Dardis and McCloskey's scheme is restricted to ns 〈 (√57-1)/28≈0.234, and that there is no extra restriction on ns(x) with Thorne and Sukop's scheme. These results are obtained for the dimensionless relaxation time τ= 1. The above analytical results are verified by our numerical simulations. The use of a gray LBM is further illustrated by simulating the flow at the interface of a porous medium. Simulation results yield velocity profiles which agree very well with Brinkman's prediction.