The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53...The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53−75μm.Low Cu recoveries,below 15%,were observed in all pH regimes.The results from the XRD,SEM−EDS,and optical microscopic(OM)analyses of the residues indicated that the dissolution proceeded through the formation of transient phases.Cu_(3.39)Fe_(0.61)S_(4) and Cu_(2)S were the intermediate phases at pH 0.5 and 1.0,respectively,whereas Cu_(5)FeS_(4) was the major mineral at pH 1.5 and 1.8.The thermodynamic modelling predicted the sequential formation of CuFeS_(2)→Cu_(5)FeS_(4)→Cu_(2)S→CuS.The soluble intermediates were Cu_(5)FeS_(4) and Cu2S,whilst,CuS and Cu_(3.39)Fe_(0.61)S_(4) were the refractory phases,supporting their cumulating behaviour throughout the dissolution.The obtained results suggest that the formation of CuS and Cu_(3.39)Fe_(0.61)S_(4) could contribute to the passive film formed during CuFeS_(2) leaching.展开更多
Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leachin...Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.展开更多
The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric...The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.展开更多
The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are pre...The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.展开更多
Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and ...Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.展开更多
The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the ...The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.展开更多
Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency ...Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency of Mg,Fe,Al,Ni,and Co reaches 93.98%,60.09%,82.08%,90.58%,and 94.06%,respectively,under the leaching conditions of 5 mol/L H_(2)SO_(4),liquid/solid ratio of 4 mL/g,and leaching temperature 100℃.Hence,the valuable metals in serpentine were effectively recovered by sulfuric acid leaching.The leaching behaviors of Mg,Fe,and a small amount of Al were analyzed using X-ray diffraction.The results show that the unreacted Mg and Fe remained as MgFe_(2)O_(4),and Al formed Al_(2)Si_(2)O_(5)(OH)_(4) in the leaching residue.The kinetics of Mg and Ni in the leaching process was studied respectively.The leaching kinetics of Mg conformed to the shrinking core model with an activation energy of 16.95 kJ/mol,which was controlled by the combination of the diffusion and chemical reaction.The leaching kinetics of Ni accorded with the Avrami equation with an activation energy of 11.57 kJ/mol,which was controlled by diffusion.In the study,the valuable metal elements were extracted from serpentine minerals with high efficiency and low cost,which possessed important practical values.展开更多
Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and...Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and some European countries. In this study, nano-sulfonated graphene (SGE) was used as a washing agent to evaluate different processing (washing) parameters for the ectopic leaching removal of polycyclic aromatic hydrocarbons (PAHs) from a coking plant soil. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR) were used to analyze the characteristics of the SGE tested. The results showed that SGE had a strong adsorption capacity for PAHs through the role of π-π, H-π, and anion-π interactions. The washing parameters, an SGE concentration of 2000 mg L-1, a liquid/soil (L/S) ratio of 10:1, and 4 cycles of successive washing, were set to arrive to the optimum condition for achieving more than 80% of PAH removal. Under the optimum condition, the PAH removal rate decreased with increasing ring numbers. After one washing cycle at SGE concentration of 2000 mg L-1 and L/S ratio of 10:1, the PAH removal rate of the SCE tested was much higher than that of Tween 80 (TW80) or methyl-β-cyclodextrin (MCD) (P 〈 0.01). Therefore, SGE is a promising material for the nanoremediation of PAH-contaminated soils.展开更多
A number of waste materials were studied on their application into asphalt mixtures. Materials tested were plastic waste as (soft) granular material,ceramic waste from electrical insulators,foundry sand and sintered g...A number of waste materials were studied on their application into asphalt mixtures. Materials tested were plastic waste as (soft) granular material,ceramic waste from electrical insulators,foundry sand and sintered granulate from burned household waste. Both plastic waste,crushed ceramics and large fractions of sintered household waste could be used as partial replacement for coarse aggregates. Foundry sand could partially replace natural sand in asphalt mixtures. The first step of the study was to find out if the waste materials could satisfy basic requirements and for some if their leaching behavior was acceptable. In the next phase mixtures were designed and mechanical tests were done on several mixtures with waste components to determine indirect tensile strength,stiffness,fatigue. In order to estimate the water sensitivity of some mixtures,retained indirect tension tests were done. The properties are reported and compared with each other and reference mixtures. From the research it becomes clear that it takes a lot of work to replace virgin materials in asphalt mixtures with waste materials.展开更多
基金the Extraction Metallurgy Laboratory at the University of Johannesburg for equipment utilizationthe Department of Chemical Engineering at the North-West University for the support and promotion of this research.NSERC-DG, CFI, Public Works and Government Service, Canada (formally Devco arm of ECBC), the Industrial Research Chair of Mine Water Management at CBU, ACOA and IRAP grants
文摘The dissolution of a carbonatitic chalcopyrite(CuFeS2)was studied in H_(2)SO_(4)−Fe_(2)(SO_(4))_(3)−FeSO_(4)−H_(2)O at varying pH values(0.5−2.5)and 25℃ for 12 h.Experiments were conducted with a size fraction of 53−75μm.Low Cu recoveries,below 15%,were observed in all pH regimes.The results from the XRD,SEM−EDS,and optical microscopic(OM)analyses of the residues indicated that the dissolution proceeded through the formation of transient phases.Cu_(3.39)Fe_(0.61)S_(4) and Cu_(2)S were the intermediate phases at pH 0.5 and 1.0,respectively,whereas Cu_(5)FeS_(4) was the major mineral at pH 1.5 and 1.8.The thermodynamic modelling predicted the sequential formation of CuFeS_(2)→Cu_(5)FeS_(4)→Cu_(2)S→CuS.The soluble intermediates were Cu_(5)FeS_(4) and Cu2S,whilst,CuS and Cu_(3.39)Fe_(0.61)S_(4) were the refractory phases,supporting their cumulating behaviour throughout the dissolution.The obtained results suggest that the formation of CuS and Cu_(3.39)Fe_(0.61)S_(4) could contribute to the passive film formed during CuFeS_(2) leaching.
文摘Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.
基金financially supported by the National Natural Science Foundation of China (No. 51374059)
文摘The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.
文摘The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.
基金Project(51674298)supported by the National Natural Science Foundation of ChinaProject supported by Anhui Province Research and Development Innovation Program,China。
文摘Hydrazine sulfate was used as a reducing agent for the leaching of Li,Ni,Co and Mn from spent lithium-ion batteries.The effects of the reaction conditions on the leaching mechanism and kinetics were characterized and examined.97%of the available Li,96%of the available Ni,95%of the available Co,and 86%of the available Mn are extracted under the following optimized conditions:sulfuric acid concentration of 2.0 mol/L,hydrazine sulfate dosage of 30 g/L,solid-to-liquid ratio of 50 g/L,temperature of 80℃,and leaching time of 60 min.The activation energies of the leaching are determined to be 44.32,59.37 and 55.62 k J/mol for Li,Ni and Co,respectively.By performing X-ray diffraction and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy,it is confirmed that the main phase in the leaching residue is MnO2.The results show that hydrazine sulfate is an effective reducing agent in the acid leaching process for spent lithium-ion batteries.
基金Projects(51804136,51764016)supported by the National Natural Science Foundation of ChinaProject(U1402271)supported by the Joint Funds of the National Natural Science Foundation of China+2 种基金Project(20181BAB216017)supported by the Jiangxi Provincial Natural Science Foundation,ChinaProject(GK-201803)supported by the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProjects(yy2016001,yy2016012)supported by the Research Fund Program of the State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources,China。
文摘The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.
基金Project(51574286)supported by the National Natural Science Foundation of China。
文摘Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency of Mg,Fe,Al,Ni,and Co reaches 93.98%,60.09%,82.08%,90.58%,and 94.06%,respectively,under the leaching conditions of 5 mol/L H_(2)SO_(4),liquid/solid ratio of 4 mL/g,and leaching temperature 100℃.Hence,the valuable metals in serpentine were effectively recovered by sulfuric acid leaching.The leaching behaviors of Mg,Fe,and a small amount of Al were analyzed using X-ray diffraction.The results show that the unreacted Mg and Fe remained as MgFe_(2)O_(4),and Al formed Al_(2)Si_(2)O_(5)(OH)_(4) in the leaching residue.The kinetics of Mg and Ni in the leaching process was studied respectively.The leaching kinetics of Mg conformed to the shrinking core model with an activation energy of 16.95 kJ/mol,which was controlled by the combination of the diffusion and chemical reaction.The leaching kinetics of Ni accorded with the Avrami equation with an activation energy of 11.57 kJ/mol,which was controlled by diffusion.In the study,the valuable metal elements were extracted from serpentine minerals with high efficiency and low cost,which possessed important practical values.
基金supported by the Distinguished Young Scholar Programe of Jiangsu Province of China (No. BK20150049)the National Natural Science Foundation of China (No. 41401565)
文摘Ex-situ soil washing technology offers advantages such as speed and efficiency of remediation and range of application and has been developed to conform with legal requirements and best management practices in USA and some European countries. In this study, nano-sulfonated graphene (SGE) was used as a washing agent to evaluate different processing (washing) parameters for the ectopic leaching removal of polycyclic aromatic hydrocarbons (PAHs) from a coking plant soil. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FTIR) were used to analyze the characteristics of the SGE tested. The results showed that SGE had a strong adsorption capacity for PAHs through the role of π-π, H-π, and anion-π interactions. The washing parameters, an SGE concentration of 2000 mg L-1, a liquid/soil (L/S) ratio of 10:1, and 4 cycles of successive washing, were set to arrive to the optimum condition for achieving more than 80% of PAH removal. Under the optimum condition, the PAH removal rate decreased with increasing ring numbers. After one washing cycle at SGE concentration of 2000 mg L-1 and L/S ratio of 10:1, the PAH removal rate of the SCE tested was much higher than that of Tween 80 (TW80) or methyl-β-cyclodextrin (MCD) (P 〈 0.01). Therefore, SGE is a promising material for the nanoremediation of PAH-contaminated soils.
文摘A number of waste materials were studied on their application into asphalt mixtures. Materials tested were plastic waste as (soft) granular material,ceramic waste from electrical insulators,foundry sand and sintered granulate from burned household waste. Both plastic waste,crushed ceramics and large fractions of sintered household waste could be used as partial replacement for coarse aggregates. Foundry sand could partially replace natural sand in asphalt mixtures. The first step of the study was to find out if the waste materials could satisfy basic requirements and for some if their leaching behavior was acceptable. In the next phase mixtures were designed and mechanical tests were done on several mixtures with waste components to determine indirect tensile strength,stiffness,fatigue. In order to estimate the water sensitivity of some mixtures,retained indirect tension tests were done. The properties are reported and compared with each other and reference mixtures. From the research it becomes clear that it takes a lot of work to replace virgin materials in asphalt mixtures with waste materials.